945 resultados para prosthetic platforms
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with a smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, little work has been made to illuminate its characteristics upon multiprocessor platforms. In this paper, we identify the dynamics of laxity from the system’s viewpoint and translate the dynamics into LLF multiprocessor schedulability analysis. More specifically, we first characterize laxity properties under LLF scheduling, focusing on laxity dynamics associated with a deadline miss. These laxity dynamics describe a lower bound, which leads to the deadline miss, on the number of tasks of certain laxity values at certain time instants. This lower bound is significant because it represents invariants for highly dynamic system parameters (laxity values). Since the laxity of a task is dependent of the amount of interference of higher-priority tasks, we can then derive a set of conditions to check whether a given task system can go into the laxity dynamics towards a deadline miss. This way, to the author’s best knowledge, we propose the first LLF multiprocessor schedulability test based on its own laxity properties. We also develop an improved schedulability test that exploits slack values. We mathematically prove that the proposed LLF tests dominate the state-of-the-art EDZL tests. We also present simulation results to evaluate schedulability performance of both the original and improved LLF tests in a quantitative manner.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, its characteristics upon multiprocessor platforms have been little studied until now. Orthogonally, it has remained open how to efficiently schedule general task systems, including constrained deadline task systems, upon multiprocessors. Recent studies have introduced zero laxity (ZL) policy, which assigns a higher priority to a task with zero laxity, as a promising scheduling approach for such systems (e.g., EDZL). Towards understanding the importance of laxity in multiprocessor scheduling, this paper investigates the characteristics of ZL policy and presents the first ZL schedulability test for any work-conserving scheduling algorithm that employs this policy. It then investigates the characteristics of LLF scheduling, which also employs the ZL policy, and derives the first LLF-specific schedulability test on multiprocessors. It is shown that the proposed LLF test dominates the ZL test as well as the state-of-art EDZL test.
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
The last decade has witnessed a major shift towards the deployment of embedded applications on multi-core platforms. However, real-time applications have not been able to fully benefit from this transition, as the computational gains offered by multi-cores are often offset by performance degradation due to shared resources, such as main memory. To efficiently use multi-core platforms for real-time systems, it is hence essential to tightly bound the interference when accessing shared resources. Although there has been much recent work in this area, a remaining key problem is to address the diversity of memory arbiters in the analysis to make it applicable to a wide range of systems. This work handles diverse arbiters by proposing a general framework to compute the maximum interference caused by the shared memory bus and its impact on the execution time of the tasks running on the cores, considering different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent and independent stages in the analysis of these upper bounds. The arbiter-dependent phase takes the arbiter and the task memory-traffic pattern as inputs and produces a model of the availability of the bus to a given task. Then, based on the availability of the bus, the arbiter-independent phase determines the worst-case request-release scenario that maximizes the interference experienced by the tasks due to the contention for the bus. We show that the framework addresses the diversity problem by applying it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing (TDM) arbiter, and an unspecified work-conserving arbiter using applications from the MediaBench test suite. We also experimentally evaluate the quality of the analysis by comparison with a state-of-the-art TDM analysis approach and consistently showing a considerable reduction in maximum interference.
Resumo:
INTRODUCTION: Pregnant women with mechanical prosthetic heart valves are at increased risk for valve thrombosis. Management decisions for this life-threatening complication are complex. Open-heart surgery has a very high risk of maternal mortality and fetal loss. Bleeding and embolic risks associated with thrombolytic agents, the limited efficacy of thrombolysis in certain subgroups, and a lack of experience in the setting of pregnancy raise important concerns. CASE REPORT: We report a case of mitral prosthetic valve thrombosis in early pregnancy, which was successfully treated with streptokinase. Ten years later, the same patient had an uneventful pregnancy, throughout which acenocoumarol was maintained. CONCLUSION: With this case we review the prevention (with oral anticoagulant therapy) and treatment of prosthetic valve thrombosis during pregnancy, which is important for both obstetrician and cardiologist.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
This research aims to provide a better understanding on how firms stimulate knowledge sharing through the utilization of collaboration tools, in particular Emergent Social Software Platforms (ESSPs). It focuses on the distinctive applications of ESSPs and on the initiatives contributing to maximize its advantages. In the first part of the research, I have itemized all types of existing collaboration tools and classify them in different categories according to their capabilities, objectives and according to their faculty for promoting knowledge sharing. In the second part, and based on an exploratory case study at Cisco Systems, I have identified the main applications of an existing enterprise social software platform named Webex Social. By combining a qualitative and quantitative approach, as well as combining data collected from survey’s results and from the analysis of the company’s documents, I am expecting to maximize the outcome of this investigation and reduce the risk of bias. Although effects cannot be universalized based on one single case study, some utilization patterns have been underlined from the data collected and potential trends in managing knowledge have been observed. The results of the research have also enabled identifying most of the constraints experienced by the users of the firm’s social software platform. Utterly, this research should provide a primary framework for firms planning to create or implement a social software platform and for firms willing to increase adoption levels and to promote the overall participation of users. It highlights the common traps that should be avoided by developers when designing a social software platform and the capabilities that it should inherently carry to support an effective knowledge management strategy.
Resumo:
Field lab: Entrepreneurial and innovative ventures
Resumo:
BACKGROUND: The impact of early valve surgery (EVS) on the outcome of Staphylococcus aureus (SA) prosthetic valve infective endocarditis (PVIE) is unresolved. The objective of this study was to evaluate the association between EVS, performed within the first 60 days of hospitalization, and outcome of SA PVIE within the International Collaboration on Endocarditis-Prospective Cohort Study. METHODS: Participants were enrolled between June 2000 and December 2006. Cox proportional hazards modeling that included surgery as a time-dependent covariate and propensity adjustment for likelihood to receive cardiac surgery was used to evaluate the impact of EVS and 1-year all-cause mortality on patients with definite left-sided S. aureus PVIE and no history of injection drug use. RESULTS: EVS was performed in 74 of the 168 (44.3%) patients. One-year mortality was significantly higher among patients with S. aureus PVIE than in patients with non-S. aureus PVIE (48.2% vs 32.9%; P = .003). Staphylococcus aureus PVIE patients who underwent EVS had a significantly lower 1-year mortality rate (33.8% vs 59.1%; P = .001). In multivariate, propensity-adjusted models, EVS was not associated with 1-year mortality (risk ratio, 0.67 [95% confidence interval, .39-1.15]; P = .15). CONCLUSIONS: In this prospective, multinational cohort of patients with S. aureus PVIE, EVS was not associated with reduced 1-year mortality. The decision to pursue EVS should be individualized for each patient, based upon infection-specific characteristics rather than solely upon the microbiology of the infection causing PVIE.
Resumo:
A Multi-Objective Antenna Placement Genetic Algorithm (MO-APGA) has been proposed for the synthesis of matched antenna arrays on complex platforms. The total number of antennas required, their position on the platform, location of loads, loading circuit parameters, decoupling and matching network topology, matching network parameters and feed network parameters are optimized simultaneously. The optimization goal was to provide a given minimum gain, specific gain discrimination between the main and back lobes and broadband performance. This algorithm is developed based on the non-dominated sorting genetic algorithm (NSGA-II) and Minimum Spanning Tree (MST) technique for producing diverse solutions when the number of objectives is increased beyond two. The proposed method is validated through the design of a wideband airborne SAR
Resumo:
In recent years, progress in the area of mobile telecommunications has changed our way of life, in the private as well as the business domain. Mobile and wireless networks have ever increasing bit rates, mobile network operators provide more and more services, and at the same time costs for the usage of mobile services and bit rates are decreasing. However, mobile services today still lack functions that seamlessly integrate into users’ everyday life. That is, service attributes such as context-awareness and personalisation are often either proprietary, limited or not available at all. In order to overcome this deficiency, telecommunications companies are heavily engaged in the research and development of service platforms for networks beyond 3G for the provisioning of innovative mobile services. These service platforms are to support such service attributes. Service platforms are to provide basic service-independent functions such as billing, identity management, context management, user profile management, etc. Instead of developing own solutions, developers of end-user services such as innovative messaging services or location-based services can utilise the platform-side functions for their own purposes. In doing so, the platform-side support for such functions takes away complexity, development time and development costs from service developers. Context-awareness and personalisation are two of the most important aspects of service platforms in telecommunications environments. The combination of context-awareness and personalisation features can also be described as situation-dependent personalisation of services. The support for this feature requires several processing steps. The focus of this doctoral thesis is on the processing step, in which the user’s current context is matched against situation-dependent user preferences to find the matching user preferences for the current user’s situation. However, to achieve this, a user profile management system and corresponding functionality is required. These parts are also covered by this thesis. Altogether, this thesis provides the following contributions: The first part of the contribution is mainly architecture-oriented. First and foremost, we provide a user profile management system that addresses the specific requirements of service platforms in telecommunications environments. In particular, the user profile management system has to deal with situation-specific user preferences and with user information for various services. In order to structure the user information, we also propose a user profile structure and the corresponding user profile ontology as part of an ontology infrastructure in a service platform. The second part of the contribution is the selection mechanism for finding matching situation-dependent user preferences for the personalisation of services. This functionality is provided as a sub-module of the user profile management system. Contrary to existing solutions, our selection mechanism is based on ontology reasoning. This mechanism is evaluated in terms of runtime performance and in terms of supported functionality compared to other approaches. The results of the evaluation show the benefits and the drawbacks of ontology modelling and ontology reasoning in practical applications.
Resumo:
This lecture outlines the decisions which need to be made early in a software project regrading the management of a professional sustainable software product or website. This lecture looks at the many different platforms and languages that can be used on these and outlines the differences between interpreted and "native" languages. We also outline the importance of using revision control systems properly and how these are essential for both distribution and supporting of software. Finally this lecture describes how to build a package for the Debian Linux platform.
Resumo:
Tutorial Resources