221 resultados para priors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based on Gibbs sampling and one based on variational Bayes. Importantly, these algorithms may be implemented in the factorization of very large matrices with missing entries. The model is evaluated on a collaborative filtering task, where users have rated a collection of movies and the system is asked to predict their ratings for other movies. The Netflix data set is used for evaluation, which consists of around 100 million ratings. Using root mean-squared error (RMSE) as an evaluation metric, results show that the suggested model outperforms alternative factorization techniques. Results also show how Gibbs sampling outperforms variational Bayes on this task, despite the large number of ratings and model parameters. Matlab implementations of the proposed algorithms are available from cogsys.imm.dtu.dk/ordinalmatrixfactorization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans develop rich mental representations that guide their behavior in a variety of everyday tasks. However, it is unknown whether these representations, often formalized as priors in Bayesian inference, are specific for each task or subserve multiple tasks. Current approaches cannot distinguish between these two possibilities because they cannot extract comparable representations across different tasks [1-10]. Here, we develop a novel method, termed cognitive tomography, that can extract complex, multidimensional priors across tasks. We apply this method to human judgments in two qualitatively different tasks, "familiarity" and "odd one out," involving an ecologically relevant set of stimuli, human faces. We show that priors over faces are structurally complex and vary dramatically across subjects, but are invariant across the tasks within each subject. The priors we extract from each task allow us to predict with high precision the behavior of subjects for novel stimuli both in the same task as well as in the other task. Our results provide the first evidence for a single high-dimensional structured representation of a naturalistic stimulus set that guides behavior in multiple tasks. Moreover, the representations estimated by cognitive tomography can provide independent, behavior-based regressors for elucidating the neural correlates of complex naturalistic priors. © 2013 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Choosing appropriate architectures and regularization strategies of deep networks is crucial to good predictive performance. To shed light on this problem, we analyze the analogous problem of constructing useful priors on compositions of functions. Specifically, we study the deep Gaussian process, a type of infinitely-wide, deep neural network. We show that in standard architectures, the representational capacity of the network tends to capture fewer degrees of freedom as the number of layers increases, retaining only a single degree of freedom in the limit. We propose an alternate network architecture which does not suffer from this pathology. We also examine deep covariance functions, obtained by composing infinitely many feature transforms. Lastly, we characterize the class of models obtained by performing dropout on Gaussian processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. Latent Dirichlet Allocation (LDA) is a document level language model. In general, LDA employ the symmetry Dirichlet distribution as prior of the topic-words’ distributions to implement model smoothing. In this paper, we propose a data-driven smoothing strategy in which probability mass is allocated from smoothing-data to latent variables by the intrinsic inference procedure of LDA. In such a way, the arbitrariness of choosing latent variables'priors for the multi-level graphical model is overcome. Following this data-driven strategy,two concrete methods, Laplacian smoothing and Jelinek-Mercer smoothing, are employed to LDA model. Evaluations on different text categorization collections show data-driven smoothing can significantly improve the performance in balanced and unbalanced corpora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While navigating in an environment, a vision system has to be able to recognize where it is and what the main objects in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is to identify familiar locations (e.g., office 610, conference room 941, Main Street), to categorize new environments (office, corridor, street) and to use that information to provide contextual priors for object recognition (e.g., table, chair, car, computer). We present a low-dimensional global image representation that provides relevant information for place recognition and categorization, and how such contextual information introduces strong priors that simplify object recognition. We have trained the system to recognize over 60 locations (indoors and outdoors) and to suggest the presence and locations of more than 20 different object types. The algorithm has been integrated into a mobile system that provides real-time feedback to the user.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes a model for including scene/context priors in attention guidance. In the proposed scheme, visual context information can be available early in the visual processing chain, in order to modulate the saliency of image regions and to provide an efficient short cut for object detection and recognition. The scene is represented by means of a low-dimensional global description obtained from low-level features. The global scene features are then used to predict the probability of presence of the target object in the scene, and its location and scale, before exploring the image. Scene information can then be used to modulate the saliency of image regions early during the visual processing in order to provide an efficient short cut for object detection and recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study strategies to improve the convergence of a powerful statistical technique based on an Expectation-Maximization iterative algorithm. First we analyze modeling approaches to generating starting points. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we study the convergence characteristics of our EM algorithm and compare it against a recently proposed Weighted Least Squares approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How does the brain make decisions? Speed and accuracy of perceptual decisions covary with certainty in the input, and correlate with the rate of evidence accumulation in parietal and frontal cortical "decision neurons." A biophysically realistic model of interactions within and between Retina/LGN and cortical areas V1, MT, MST, and LIP, gated by basal ganglia, simulates dynamic properties of decision-making in response to ambiguous visual motion stimuli used by Newsome, Shadlen, and colleagues in their neurophysiological experiments. The model clarifies how brain circuits that solve the aperture problem interact with a recurrent competitive network with self-normalizing choice properties to carry out probablistic decisions in real time. Some scientists claim that perception and decision-making can be described using Bayesian inference or related general statistical ideas, that estimate the optimal interpretation of the stimulus given priors and likelihoods. However, such concepts do not propose the neocortical mechanisms that enable perception, and make decisions. The present model explains behavioral and neurophysiological decision-making data without an appeal to Bayesian concepts and, unlike other existing models of these data, generates perceptual representations and choice dynamics in response to the experimental visual stimuli. Quantitative model simulations include the time course of LIP neuronal dynamics, as well as behavioral accuracy and reaction time properties, during both correct and error trials at different levels of input ambiguity in both fixed duration and reaction time tasks. Model MT/MST interactions compute the global direction of random dot motion stimuli, while model LIP computes the stochastic perceptual decision that leads to a saccadic eye movement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the multiplicity-correction effect of standard Bayesian variable-selection priors in linear regression. Our first goal is to clarify when, and how, multiplicity correction happens automatically in Bayesian analysis, and to distinguish this correction from the Bayesian Ockham's-razor effect. Our second goal is to contrast empirical-Bayes and fully Bayesian approaches to variable selection through examples, theoretical results and simulations. Considerable differences between the two approaches are found. In particular, we prove a theorem that characterizes a surprising aymptotic discrepancy between fully Bayes and empirical Bayes. This discrepancy arises from a different source than the failure to account for hyperparameter uncertainty in the empirical-Bayes estimate. Indeed, even at the extreme, when the empirical-Bayes estimate converges asymptotically to the true variable-inclusion probability, the potential for a serious difference remains. © Institute of Mathematical Statistics, 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem we propose a novel class of Bayesian Gaussian copula factor models which decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference. We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this paper are implemented in the R package bfa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiocarbon dating is routinely used in paleoecology to build chronolo- gies of lake and peat sediments, aiming at inferring a model that would relate the sediment depth with its age. We present a new approach for chronology building (called “Bacon”) that has received enthusiastic attention by paleoecologists. Our methodology is based on controlling core accumulation rates using a gamma autoregressive semiparametric model with an arbitrary number of subdivisions along the sediment. Using prior knowledge about accumulation rates is crucial and informative priors are routinely used. Since many sediment cores are currently analyzed, using different data sets and prior distributions, a robust (adaptive) MCMC is very useful. We use the t-walk (Christen and Fox, 2010), a self adjusting, robust MCMC sampling algorithm, that works acceptably well in many situations. Outliers are also addressed using a recent approach that considers a Student-t model for radiocarbon data. Two examples are presented here, that of a peat core and a core from a lake, and our results are compared with other approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery of a new transiting planet in the southern hemisphere. It was found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2 m Swiss Euler telescope, LCOGT 2m Faulkes South Telescope, the 60 cm TRAPPIST telescope, and the ESO 3.6 m telescope. The orbital period of the planet is 2.94 days. We find that it is a gas giant with a mass of 0.88 ± 0.10 MJ and an estimated radius of 0.96 ± 0.05 RJ. We obtained spectra during transit with the HARPS spectrograph and detect the Rossiter-McLaughlin effect despite its small amplitude. Because of the low signal-to-noise ratio of the effect and a small impact parameter, we cannot place a strong constraint on the projected spin-orbit angle. We find two conflicting values for the stellar rotation. We find, via spectral line broadening, that v sin I = 2.2 ± 0.3 km s-1, while applying another method, based on the activity level using the index log R'_HK, gives an equatorial rotation velocity of only v = 1.35 ± 0.20 km s-1. Using these as priors in our analysis, the planet might be either misaligned or aligned. This result raises doubts about the use of such priors. There is evidence of neither eccentricity nor any radial velocity drift with time. Using WASP-South photometric observations confirmed with LCOGT Faulkes South Telescope, the 60 cm TRAPPIST telescope, the CORALIE spectrograph and the camera from the Swiss 1.2 m Euler Telescope placed at La Silla, Chile, as well as with the HARPS spectrograph, mounted on the ESO 3.6 m, also at La Silla, under proposal 084.C-0185. The data is publicly available at the CDS Strasbourg and on demand to the main author.RV data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A24Appendix is available in electronic form at http://www.aanda.org