960 resultados para preimplantation genetic diagnosis
Resumo:
The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease- causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next generation sequencing was carried out revealing variants in a number of other known complex spastic paraplegia genes, including five in SPG7 (5/97), four in FA2H (also known as SPG35) (4/97) and two in ZFYVE26/SPG15. Variants were identified in genes usually associated with pure spastic paraplegia and also in the Parkinson’s disease-associated gene ATP13A2, neuronal ceroid lipofuscinosis gene TPP1 and the hereditary motor and sensory neuropathy DNMT1 gene, highlighting the genetic heterogeneity of spastic paraplegia. No plausible genetic cause was identified in 51% of probands, likely indicating the existence of as yet unidentified genes.
Resumo:
In this study, we describe the first survey in Thailand of Trypanosoma theileri, a widespread and prevalent parasite of cattle that is transmitted by tabanid flies. Investigation of 210 bovine blood samples of Thai cattle from six farms by hematocrit centrifuge technique (HCT) revealed 14 samples with trypanosomes morphologically compatible to T. theileri. Additional animals were positive for T. theileri by PCR based on the Cathepsin L-like sequence (TthCATL-PCR) despite negative by HCT, indicating cryptic infections. Results revealed a prevalence of 26 +/- 15% (95% CI) of T. theileri infection. Additionally, 12 samples positive for T. theileri were detected in cattle from other 11 farms. From a total of 30 blood samples positive by HCT and/or PCR from 17 farms, seven were characterized to evaluate the genetic polymorphism of T. theileri through sequence analysis of PCR-amplified CATL DNA sequences. All CATL sequences of T. theileri from Thai cattle clustered with sequences of the previously described phylogenetic lineages TthI and TthII, supporting only two major lineages of T. theileri in cattle around the world. However, 11 of the 29 CATL sequences analyzed showed to be different, disclosing an unexpectedly large polymorphic genetic repertoire, with multiple genotypes of T. theileri not previously described in other countries circulating in Thai cattle. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mucosal bridges are rare laryngeal lesions probably of genetic origin. They may cause dysphonia of varying degrees, especially when associated with other laryngeal lesions such as vocal sulci and cysts. Reports on mucosal bridges are rare, and the better treatment is inconclusive.Aim. To report the authors' experience in 14 cases of mucosal bridge showing details on endoscopic examinations and treatment.Study Design. Retrospective study.Methods. We reviewed the medical records of 14 patients with a diagnosis of mucosal bridge confirmed by video-laryngostroboscopy and direct laryngoscopy who attended the Outpatient Clinic of Voice Disorders of the Discipline of Otorhinolaryngology, Botucatu Medical School, São Paulo State University, São Paulo. Data collected included information on gender, age, symptoms, time of onset, history of intubation, smoking status, alcohol intake, associated laryngeal lesions, treatment, and GRBAS (grade of hoarseness, roughness, breathiness, asthenia, and stress) scale ratings.Results. of 14 patients, 10 were females and four were males. There was a prevalence of adults (n = 12), with only two of the patients being younger than 13 years (10 and 13 years). Mucosal bridges showed no correlations with smoking, alcohol intake, or gastroesophageal and sinonasal symptoms. Voice abuse was reported in 50% of the cases that consisted of patients who had high-voice demand occupations. In seven cases, mucosal bridges were associated with other laryngeal lesions, particularly vocal cysts and sulci. All patients who underwent surgery and phonotherapy showed improved vocal quality.Conclusions. We documented 14 patients with dysphonia caused by mucosal bridge. Promising results were obtained with surgery.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A pair of primers directed to 16S-23S rDNA interspacer (ITS) was designed directed to Brucella genetic sequences in order to develop a polymerase chain reaction (PCR) putatively capable of amplifying DNA from any Brucella species. Nucleic acid extracts from whole-blood from naive dogs were spiked with decreasing amounts of Brucella canis RM6/66 DNA and the resulting solutions were tested by PCR. In addition, the ability of PCR to amplify Brucella spp. genetic sequences from naturally infected dogs was evaluated using 210 whole-blood samples of dogs from 19 kennels. The whole-blood samples collected were subjected to blood culture and PCR. Serodiagnosis was performed using the rapid slide agglutination test with and without 2-mercaptoethanol. The DNA from whole blood was extracted using proteinase-K, sodium dodecyl sulphate and cetyl trimethyl ammonium bromide followed by phenol-chloroform purification. The PCR was capable of detecting as little as 3.8 fg of Brucella DNA mixed with 450 ng of host DNA. Theoretically, 3.8 fg of Brucella DNA represents the total genomic mass of fewer than two bacterial cells. The PCR diagnostic sensitivity and specificity were 100%. From the results observed in the present study, we conclude that PCR could be used as confirmatory test for diagnosis of B. canis infection.
Clinical features and genetic analysis of four Brazilian kindreds with resistance to thyroid hormone
Resumo:
Objective Resistance to thyroid hormone (RTH) is a dominantly inherited syndrome of reduced tissue responsiveness to thyroid hormone usually due to mutations located in the ligand-binding domain and adjacent hinge region of the thyroid hormone receptor beta (TR beta). In the present report we describe the clinical and laboratory characteristics and the genetic analysis of patients with this rare disorder from a Brazilian population.Patients Four unrelated Brazilian families with diagnosis of RTH were studied. Age at diagnosis varied from 14 months to 29 years.Results All affected individuals were clinically euthyroid, except for one patient who presented immediately after birth with hyperthyroidism. All individuals had tachycardia and goitre, elevated concentrations of free thyroid hormones and reduced sensitivity to thyroid hormone. Direct sequencing analysis of the TR beta gene revealed four previously reported mutations: c.949G -> A, c.1313G -> A, c.1357C -> A and c.1358dupC in families A, B, C and D, respectively.Conclusion the present report shows that the frequent mutations described in the thyroid hormone receptor worldwide are also present in the Brazilian population, which is characterized by a variable ethnic background.
Resumo:
The buffaloes dairy milk production (BDMP) has increased in the last 20 years, mainly for the manufacturing of mozzarella cheese, which is recognized by its high nutritional quality. However, this quality can be affected by several factors i. e. high somatic cells count (SCC) provokes changes in the milk's constituents. As in bovine dairy milk, the SCC is used as diagnostic tool for milk quality; because it enables the diagnosis of sub-clinic mastitis and also allows the selection of individuals genetically resistant to that disease. Based on it, we collected information about SCC and BDMP along the lactation in Murrah breed buffaloes, during the period between 1997 and 2005. Curves were designed to estimate genetic parameters. These parameters were estimated by ordinary test-day models. There were observed variations in the estimated heritability for both characteristics the lowest score for somatic cells count (SSCC) was seen at first month (0.01) and the highest at sixth months (0.29 the genetic correlation between these traits varied from -1 at the 1 and 9(th) months to 0.31 and 0.30 in the2 and 4(th) month of lactation. Phenotypic correlations were all negative (-0.07 in the second month and up to -0.35 in the eighth month of lactation). These results showed that environmental factors are more important than genetics in explain SCC, for this reason, selection for genetic resistance to mastitis in buffalos based in SCC should not be done. In the other hand, negative phenotypic correlations demonstrated that as the SCC increased, the milk production decreased.
Resumo:
Cleidocranial dysplasia (CCD) is a rare syndrome usually caused by an autosomal dominant gene, although 40% of cases of CCD appear spontaneously with no apparent genetic cause. This condition is characterized by several cranial malformations and underdevelopment, absence of the clavicles, and multiple supernumerary and impacted permanent teeth. The diagnosis of this condition is usually based on the presence of the main features (supernumerary teeth, partial or total absence of one or both the clavicles, and bony malformations) and on clinical and familial evidence. The bony and dental features of CCD may be visualized on radiographic images of the face and skull. Here, we present a familial case of CCD and discuss the importance of dental radiographs in diagnosis of the condition.
Resumo:
Cherubism is a rare non-neoplastic hereditary disease, characterized by bilateral bone enlargement of the jaws and is accompanied by inflammation and fibrosis in childhood. An increase in jaw size is noted, with maximum enlargement occurring within 2 years of onset in most cases. By age 7, the lesions become static or progress relatively slowly until puberty. During the late teens, the disease may undergo spontaneous involution. The present case show a patient with history of bilateral enlargement of the jaw with the triad of clinical, histological and radiological findings that helps in the final diagnosis of cherubism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Williams-Beuren syndrome (WBS) is a genetic disorder characterized by physical and intellectual developmental delay, associated with congenital heart disease and facial dysmorphism. WBS is caused by a microdeletion on chromosome 7 (7q11.23), which encompasses the elastin (ELN) gene and about 27 other genes. The gold standard for WBS laboratory diagnosis is FISH (fluorescence in situ hybridization), which is very costly. As a possible alternative, we investigated the accuracy of three clinical diagnostic scoring systems in 250 patients with WBS diagnosed by FISH. We concluded that all three systems could be used for the clinical diagnosis of WBS, but they all gave a low percentage of false-positive (6.0-9.2%) and false-negative (0.8-4.0%) results. Therefore, their use should be associated with FISH testing. © FUNPEC-RP.
Resumo:
The objective of the study was to estimate heritability for calving interval (CI) and age at first calving (AFC) and also calculate repeatability for CI in buffaloes using Bayesian inference. The Brazilian Buffaloes Genetic Improvement Program provided the database. Data consists on information from 628 females and four different herds, born between 1980 and 2003. In order to estimate the variance, univariate analyses were performed employing Gibbs sampler procedure included in the MTGSAM software. The model for CI included the random effects direct additive and permanent environment factors, and the fixed effects of contemporary groups and calving orders. The model for AFC included the direct additive random effect and contemporary groups as a fixed effect. The convergence diagnosis was obtained using Geweke that was implemented through the Bayesian Output Analysis package in R software. The estimated averages were 433.2 days and 36.7months for CI and AFC, respectively. The means, medians and modes for the calculated heritability coefficients were similar. The heritability coefficients were 0.10 and 0.42 for CI and AFC respectively, with a posteriori marginal density that follows a normal distribution for both traits. The repeatability for CI was 0.13. The low heritability estimated for CI indicates that the variation in this trait is, to a large extent, influenced by environmental factors such as herd management policies. The age at first calving has clear potential for yield improvement through direct selection in these animals.
Resumo:
The aim of this study was to estimate genetic, environmental and phenotypic correlation between birth weight (BW) and weight at 205 days age (W205), BW and weight at 365 days age (W365) and W205-W365, using Bayesian inference. The Brazilian Program for Genetic Improvement of Buffaloes provided the data that included 3,883 observations from Mediterranean breed buffaloes. With the purpose to estimate variance and covariance, bivariate analyses were performed using Gibbs sampler that is included in the MTGSAM software. The model for BW, W205 and W365 included additive direct and maternal genetic random effects, maternal environmental random effect and contemporary group as fixed effect. The convergence diagnosis was achieved using Geweke, a method that uses an algorithm implemented in R software through the package Bayesian Output Analysis. The calculated direct genetic correlations were 0.34 (BW-W205), 0.25 (BW-W365) and 0.74 (W205-W365). The environmental correlations were 0.12, 0.11 and 0.72 between BW-W205, BW-W365 and W205-W365, respectively. The phenotypic correlations were low for BW-W205 (0.01) and BW-W365 (0.04), differently than the obtained for W205-W365 with a value of 0.67. The results indicate that BW trait have low genetic, environmental and phenotypic association with the two others traits. The genetic correlation between W205 and W365 was high and suggests that the selection for weight at around 205 days could be beneficial to accelerate the genetic gain.
Resumo:
Quantitative analysis of growth genetic parameters is not available for many breeds of buffaloes making selection and breeding decisions an empirical process that lacks robustness. The objective of this study was to estimate heritability for birth weight (BW), weight at 205 days (W205) and 365 days (W365) of age using Bayesian inference. The Brazilian Program for Genetic Improvement of Buffaloes provided the data. For the traits BW, W205 and W365 of Brazilian Mediterranean buffaloes 5169, 3792 and 3883 observations have been employed for the analysis, respectively. In order to obtain the estimates of variance, univariate analyses were conducted using the Gibbs sampler included in the MTGSAM software. The model for BW, W205 and W365 included additive direct and maternal genetic random effects, random maternal permanent environmental effect and contemporary group that was treated as a fixed effect. The convergence diagnosis was performed employing Geweke, a method that uses an algorithm from the Bayesian Output Analysis package that was implemented using R software environment. The average values for weight traits were 37.6 +/- 4.7 kg for BW, 192.7 +/- 40.3 kg for W205 and 298.6 +/- 67.4 kg for W365. The heritability posterior distributions for direct and maternal effects were symmetric and close to those expected in a normal distribution. Direct heritability estimates obtained using the modes were 0.30 (BW), 0.52 (W205) and 0.54 (W365). The maternal heritability coefficient estimates were 0.31, 0.19 and 0.21 for BW, W205 and W365, respectively. Our data suggests that all growth traits and mainly W205 and W365, have clear potential for yield improvement through direct genetic selection.