920 resultados para predictive regression model
Resumo:
STUDY AIM:: To develop a score predicting the risk of bacteremia in cancer patients with fever and neutropenia (FN), and to evaluate its performance. METHODS:: Pediatric patients with cancer presenting with FN induced by nonmyeloablative chemotherapy were observed in a prospective multicenter study. A score predicting the risk of bacteremia was developed from a multivariate mixed logistic regression model. Its cross-validated predictive performance was compared with that of published risk prediction rules. RESULTS:: Bacteremia was reported in 67 (16%) of 423 FN episodes. In 34 episodes (8%), bacteremia became known only after reassessment after 8 to 24 hours of inpatient management. Predicting bacteremia at reassessment was better than prediction at presentation with FN. A differential leukocyte count did not increase the predictive performance. The reassessment score predicting future bacteremia in 390 episodes without known bacteremia used the following 4 variables: hemoglobin ≥90 g/L at presentation (weight 3), platelet count <50 G/L (3), shaking chills (5), and other need for inpatient treatment or observation according to the treating physician (3). Applying a threshold ≥3, the score-simplified into a low-risk checklist-predicted bacteremia with 100% sensitivity, with 54 episodes (13%) classified as low-risk, and a specificity of 15%. CONCLUSIONS:: This reassessment score, simplified into a low-risk checklist of 4 routinely accessible characteristics, identifies pediatric patients with FN at risk for bacteremia. It has the potential to contribute to the reduction of use of antimicrobials in, and to shorten the length of hospital stays of pediatric patients with cancer and FN.
Resumo:
OBJECTIVES: To determine clinical and ultrasonographic predictors of joint replacement surgery across Europe in primary osteoarthritis (OA) of the knee. METHODS: This was a 3-year prospective study of a painful OA knee cohort (from a EULAR-sponsored, multicentre study). All subjects had clinical evaluation, radiographs and ultrasonography (US) at study entry. The rate of knee replacement surgery over the 3-year follow-up period was determined using Kaplan-Meier survival data analyses. Predictive factors for joint replacement were identified by univariate log-rank test then multivariate analysis using a Cox proportional-hazards regression model. Potential baseline predictors included demographic, clinical, radiographic and US features. RESULTS: Of the 600 original patients, 531 (88.5%), mean age 67+/-10 years, mean disease duration 6.1+/-6.9 years, had follow-up data and were analysed. During follow-up (median 3 years; range 0-4 years), knee replacement was done or required for 94 patients (estimated event rate of 17.7%). In the multivariate analysis, predictors of joint replacement were as follows: Kellgren and Lawrence radiographic grade (grade > or =III vs <III, hazards ratio (HR) = 4.08 (95% CI 2.34 to 7.12), p<0.0001); ultrasonographic knee effusion (> or =4 mm vs <4 mm) (HR = 2.63 (95% CI 1.70 to 4.06), p<0.0001); knee pain intensity on a 0-100 mm visual analogue scale (> or =60 vs <60) (HR = 1.81 (95% CI 1.15 to 2.83), p=0.01) and disease duration (> or =5 years vs <5 years) (HR=1.63 (95% CI 1.08 to 2.47), p=0.02). Clinically detected effusion and US synovitis were not associated with joint replacement in the univariate analysis. CONCLUSION: Longitudinal evaluation of this OA cohort demonstrated significant progression to joint replacement. In addition to severity of radiographic damage and pain, US-detected effusion was a predictor of subsequent joint replacement.
Resumo:
PURPOSE To develop a score predicting the risk of adverse events (AEs) in pediatric patients with cancer who experience fever and neutropenia (FN) and to evaluate its performance. PATIENTS AND METHODS Pediatric patients with cancer presenting with FN induced by nonmyeloablative chemotherapy were observed in a prospective multicenter study. A score predicting the risk of future AEs (ie, serious medical complication, microbiologically defined infection, radiologically confirmed pneumonia) was developed from a multivariate mixed logistic regression model. Its cross-validated predictive performance was compared with that of published risk prediction rules. Results An AE was reported in 122 (29%) of 423 FN episodes. In 57 episodes (13%), the first AE was known only after reassessment after 8 to 24 hours of inpatient management. Predicting AE at reassessment was better than prediction at presentation with FN. A differential leukocyte count did not increase the predictive performance. The score predicting future AE in 358 episodes without known AE at reassessment used the following four variables: preceding chemotherapy more intensive than acute lymphoblastic leukemia maintenance (weight = 4), hemoglobin > or = 90 g/L (weight = 5), leukocyte count less than 0.3 G/L (weight = 3), and platelet count less than 50 G/L (weight = 3). A score (sum of weights) > or = 9 predicted future AEs. The cross-validated performance of this score exceeded the performance of published risk prediction rules. At an overall sensitivity of 92%, 35% of the episodes were classified as low risk, with a specificity of 45% and a negative predictive value of 93%. CONCLUSION This score, based on four routinely accessible characteristics, accurately identifies pediatric patients with cancer with FN at risk for AEs after reassessment.
Resumo:
In the fixed design regression model, additional weights areconsidered for the Nadaraya--Watson and Gasser--M\"uller kernel estimators.We study their asymptotic behavior and the relationships between new andclassical estimators. For a simple family of weights, and considering theIMSE as global loss criterion, we show some possible theoretical advantages.An empirical study illustrates the performance of the weighted estimatorsin finite samples.
Resumo:
This paper shows how recently developed regression-based methods for thedecomposition of health inequality can be extended to incorporateindividual heterogeneity in the responses of health to the explanatoryvariables. We illustrate our method with an application to the CanadianNPHS of 1994. Our strategy for the estimation of heterogeneous responsesis based on the quantile regression model. The results suggest that thereis an important degree of heterogeneity in the association of health toexplanatory variables which, in turn, accounts for a substantial percentageof inequality in observed health. A particularly interesting finding isthat the marginal response of health to income is zero for healthyindividuals but positive and significant for unhealthy individuals. Theheterogeneity in the income response reduces both overall health inequalityand income related health inequality.
Resumo:
ABSTRACT: BACKGROUND: Chest pain raises concern for the possibility of coronary heart disease. Scoring methods have been developed to identify coronary heart disease in emergency settings, but not in primary care. METHODS: Data were collected from a multicenter Swiss clinical cohort study including 672 consecutive patients with chest pain, who had visited one of 59 family practitioners' offices. Using delayed diagnosis we derived a prediction rule to rule out coronary heart disease by means of a logistic regression model. Known cardiovascular risk factors, pain characteristics, and physical signs associated with coronary heart disease were explored to develop a clinical score. Patients diagnosed with angina or acute myocardial infarction within the year following their initial visit comprised the coronary heart disease group. RESULTS: The coronary heart disease score was derived from eight variables: age, gender, duration of chest pain from 1 to 60 minutes, substernal chest pain location, pain increases with exertion, absence of tenderness point at palpation, cardiovascular risks factors, and personal history of cardiovascular disease. Area under the receiver operating characteristics curve was of 0.95 with a 95% confidence interval of 0.92; 0.97. From this score, 413 patients were considered as low risk for values of percentile 5 of the coronary heart disease patients. Internal validity was confirmed by bootstrapping. External validation using data from a German cohort (Marburg, n = 774) revealed a receiver operating characteristics curve of 0.75 (95% confidence interval, 0.72; 0.81) with a sensitivity of 85.6% and a specificity of 47.2%. CONCLUSIONS: This score, based only on history and physical examination, is a complementary tool for ruling out coronary heart disease in primary care patients complaining of chest pain.
Resumo:
PURPOSE To develop a score predicting the risk of adverse events (AEs) in pediatric patients with cancer who experience fever and neutropenia (FN) and to evaluate its performance. PATIENTS AND METHODS Pediatric patients with cancer presenting with FN induced by nonmyeloablative chemotherapy were observed in a prospective multicenter study. A score predicting the risk of future AEs (ie, serious medical complication, microbiologically defined infection, radiologically confirmed pneumonia) was developed from a multivariate mixed logistic regression model. Its cross-validated predictive performance was compared with that of published risk prediction rules. Results An AE was reported in 122 (29%) of 423 FN episodes. In 57 episodes (13%), the first AE was known only after reassessment after 8 to 24 hours of inpatient management. Predicting AE at reassessment was better than prediction at presentation with FN. A differential leukocyte count did not increase the predictive performance. The score predicting future AE in 358 episodes without known AE at reassessment used the following four variables: preceding chemotherapy more intensive than acute lymphoblastic leukemia maintenance (weight = 4), hemoglobin > or = 90 g/L (weight = 5), leukocyte count less than 0.3 G/L (weight = 3), and platelet count less than 50 G/L (weight = 3). A score (sum of weights) > or = 9 predicted future AEs. The cross-validated performance of this score exceeded the performance of published risk prediction rules. At an overall sensitivity of 92%, 35% of the episodes were classified as low risk, with a specificity of 45% and a negative predictive value of 93%. CONCLUSION This score, based on four routinely accessible characteristics, accurately identifies pediatric patients with cancer with FN at risk for AEs after reassessment.
Resumo:
Ventilator-associated pneumonia (VAP) affects mortality, morbidity and cost of critical care. Reliable risk estimation might improve end-of-life decisions, resource allocation and outcome. Several scoring systems for survival prediction have been established and optimised over the last decades. Recently, new biomarkers have gained interest in the prognostic field. We assessed whether midregional pro-atrial natriuretic peptide (MR-proANP) and procalcitonin (PCT) improve the predictive value of the Simplified Acute Physiologic Score (SAPS) II and Sequential Related Organ Failure Assessment (SOFA) in VAP. Specified end-points of a prospective multinational trial including 101 patients with VAP were analysed. Death <28 days after VAP onset was the primary end-point. MR-proANP and PCT were elevated at the onset of VAP in nonsurvivors compared with survivors (p = 0.003 and p = 0.017, respectively) and their slope of decline differed significantly (p = 0.018 and p = 0.039, respectively). Patients with the highest MR-proANP quartile at VAP onset were at increased risk for death (log rank p = 0.013). In a logistic regression model, MR-proANP was identified as the best predictor of survival. Adding MR-proANP and PCT to SAPS II and SOFA improved their predictive properties (area under the curve 0.895 and 0.880). We conclude that the combination of two biomarkers, MR-proANP and PCT, improve survival prediction of clinical severity scores in VAP.
Resumo:
The objectives of this study were to develop a computerized method to screen for potentially avoidable hospital readmissions using routinely collected data and a prediction model to adjust rates for case mix. We studied hospital information system data of a random sample of 3,474 inpatients discharged alive in 1997 from a university hospital and medical records of those (1,115) readmitted within 1 year. The gold standard was set on the basis of the hospital data and medical records: all readmissions were classified as foreseen readmissions, unforeseen readmissions for a new affection, or unforeseen readmissions for a previously known affection. The latter category was submitted to a systematic medical record review to identify the main cause of readmission. Potentially avoidable readmissions were defined as a subgroup of unforeseen readmissions for a previously known affection occurring within an appropriate interval, set to maximize the chance of detecting avoidable readmissions. The computerized screening algorithm was strictly based on routine statistics: diagnosis and procedures coding and admission mode. The prediction was based on a Poisson regression model. There were 454 (13.1%) unforeseen readmissions for a previously known affection within 1 year. Fifty-nine readmissions (1.7%) were judged avoidable, most of them occurring within 1 month, which was the interval used to define potentially avoidable readmissions (n = 174, 5.0%). The intra-sample sensitivity and specificity of the screening algorithm both reached approximately 96%. Higher risk for potentially avoidable readmission was associated with previous hospitalizations, high comorbidity index, and long length of stay; lower risk was associated with surgery and delivery. The model offers satisfactory predictive performance and a good medical plausibility. The proposed measure could be used as an indicator of inpatient care outcome. However, the instrument should be validated using other sets of data from various hospitals.
Resumo:
Background: Modelling epidemiological knowledge in validated clinical scores is a practical mean of integrating EBM to usual care. Existing scores about cardiovascular disease have been largely developed in emergency settings, but few in primary care. Such a toll is needed for general practitioners (GP) to evaluate the probability of ischemic heart disease (IHD) in patients with non-traumatic chest pain. Objective: To develop a predictive model to use as a clinical score for detecting IHD in patients with non-traumatic chest-pain in primary care. Methods: A post-hoc secondary analysis on data from an observational study including 672 patients with chest pain of which 85 had IHD diagnosed by their GP during the year following their inclusion. Best subset method was used to select 8 predictive variables from univariate analysis and fitted in a multivariate logistic regression model to define the score. Reliability of the model was assessed using split-group method. Results: Significant predictors were: age (0-3 points), gender (1 point), having at least one cardiovascular risks factor (hypertension, dyslipidemia, diabetes, smoking, family history of CVD; 3 points), personal history of cardiovascular disease (1 point), duration of chest pain from 1 to 60 minutes (2 points), substernal chest pain (1 point), pain increasing with exertion (1 point) and absence of tenderness at palpation (1 point). Area under the ROC curve for the score was of 0.95 (IC95% 0.93; 0.97). Patients were categorised in three groups, low risk of IHD (score under 6; n = 360), moderate risk of IHD (score from 6 to 8; n = 187) and high risk of IHD (score from 9-13; n = 125). Prevalence of IHD in each group was respectively of 0%, 6.7%, 58.5%. Reliability of the model seems satisfactory as the model developed from the derivation set predicted perfectly (p = 0.948) the number of patients in each group in the validation set. Conclusion: This clinical score based only on history and physical exams can be an important tool in the practice of the general physician for the prediction of ischemic heart disease in patients complaining of chest pain. The score below 6 points (in more than half of our population) can avoid demanding complementary exams for selected patients (ECG, laboratory tests) because of the very low risk of IHD. Score above 6 points needs investigation to detect or rule out IHD. Further external validation is required in ambulatory settings.
Resumo:
We present the most comprehensive comparison to date of the predictive benefit of genetics in addition to currently used clinical variables, using genotype data for 33 single-nucleotide polymorphisms (SNPs) in 1,547 Caucasian men from the placebo arm of the REduction by DUtasteride of prostate Cancer Events (REDUCE®) trial. Moreover, we conducted a detailed comparison of three techniques for incorporating genetics into clinical risk prediction. The first method was a standard logistic regression model, which included separate terms for the clinical covariates and for each of the genetic markers. This approach ignores a substantial amount of external information concerning effect sizes for these Genome Wide Association Study (GWAS)-replicated SNPs. The second and third methods investigated two possible approaches to incorporating meta-analysed external SNP effect estimates - one via a weighted PCa 'risk' score based solely on the meta analysis estimates, and the other incorporating both the current and prior data via informative priors in a Bayesian logistic regression model. All methods demonstrated a slight improvement in predictive performance upon incorporation of genetics. The two methods that incorporated external information showed the greatest receiver-operating-characteristic AUCs increase from 0.61 to 0.64. The value of our methods comparison is likely to lie in observations of performance similarities, rather than difference, between three approaches of very different resource requirements. The two methods that included external information performed best, but only marginally despite substantial differences in complexity.
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
The aim of the present study was to determine the impact of trabecular bone score on the probability of fracture above that provided by the clinical risk factors utilized in FRAX. We performed a retrospective cohort study of 33,352 women aged 40-99 years from the province of Manitoba, Canada, with baseline measurements of lumbar spine trabecular bone score (TBS) and FRAX risk variables. The analysis was cohort-specific rather than based on the Canadian version of FRAX. The associations between trabecular bone score, the FRAX risk factors and the risk of fracture or death were examined using an extension of the Poisson regression model and used to calculate 10-year probabilities of fracture with and without TBS and to derive an algorithm to adjust fracture probability to take account of the independent contribution of TBS to fracture and mortality risk. During a mean follow-up of 4.7 years, 1754 women died and 1639 sustained one or more major osteoporotic fractures excluding hip fracture and 306 women sustained one or more hip fracture. When fully adjusted for FRAX risk variables, TBS remained a statistically significant predictor of major osteoporotic fractures excluding hip fracture (HR/SD 1.18, 95 % CI 1.12-1.24), death (HR/SD 1.20, 95 % CI 1.14-1.26) and hip fracture (HR/SD 1.23, 95 % CI 1.09-1.38). Models adjusting major osteoporotic fracture and hip fracture probability were derived, accounting for age and trabecular bone score with death considered as a competing event. Lumbar spine texture analysis using TBS is a risk factor for osteoporotic fracture and a risk factor for death. The predictive ability of TBS is independent of FRAX clinical risk factors and femoral neck BMD. Adjustment of fracture probability to take account of the independent contribution of TBS to fracture and mortality risk requires validation in independent cohorts.
Resumo:
Perinteisesti ajoneuvojen markkinointikampanjoissa kohderyhmät muodostetaan yksinkertaisella kriteeristöllä koskien henkilön tai hänen ajoneuvonsa ominaisuuksia. Ennustavan analytiikan avulla voidaan tuottaa kohderyhmänmuodostukseen teknisesti kompleksisia mutta kuitenkin helppokäyttöisiä menetelmiä. Tässä työssä on sovellettu luokittelu- ja regressiomenetelmiä uuden auton ostajien joukkoon. Tämän työn menetelmiksi on rajattu tukivektorikone sekä Coxin regressiomalli. Coxin regression avulla on tutkittu elinaika-analyysien soveltuvuutta ostotapahtuman tapahtumahetken mallintamiseen. Luokittelu tukivektorikonetta käyttäen onnistuu tehtävässään noin 72% tapauksissa. Tukivektoriregressiolla mallinnetun hankintahetken virheen keskiarvo on noin neljä kuukautta. Työn tulosten perusteella myös elinaika-analyysin käyttö ostotapahtuman tapahtumahetken mallintamiseen on menetelmänä käyttökelpoinen.
Resumo:
The aim of this study was to determine the relationship between urinary albumin excretion (UAE), cardiac structural changes upon echocardiography and 24-h ambulatory blood pressure (ABPM) levels. Twenty mild hypertensive patients (mean age 56.8 ± 9.6 years) were evaluated. After 2 weeks of a washout period of all antihypertensive drugs, all patients underwent an echocardiographic evaluation, a 24-h ABPM and an overnight urine collection. Systolic and diastolic blood pressure during 24-h ABPM was 145 ± 14/91 ± 10 mmHg (daytime) and 130 ± 14/76 ± 8 mmHg (nighttime), respectively. Seven (35%) patients presented UAE > or = 15 µg/min, and for the whole group, the geometric mean value for UAE was 10.2 x/÷ 3.86 µg/min. Cardiac measurements showed mean values of interventricular septum thickness (IVS) of 11 ± 2.3 mm, left ventricular posterior wall thickness (PWT) of 10 ± 2.0 mm, left ventricular mass (LVM) of 165 ± 52 g, and left ventricular mass index (LVMI) of 99 ± 31 g/m². A forward stepwise regression model indicated that blood pressure levels did not influence UAE. Significant correlations were observed between UAE and cardiac structural parameters such as IVS (r = 0.71, P<0.001), PWT (r = 0.64, P<0.005), LVM (r = 0.65, P<0.005) and LVMI (r = 0.57, P<0.01). Compared with normoalbuminuric patients, those who had microalbuminuria presented higher values of all cardiac parameters measured. The predictive positive and negative values of UAE > or = 15 µg/min for the presence of geometric cardiac abnormalities were 75 and 91.6%. These data indicate that microalbuminuria in essential hypertension represents an early marker of cardiac structural damage.