962 resultados para post-quake reconstruction
Resumo:
Introduction: The objective of the study was to evaluate the ability of large-volume cone-beam computed tomography (CBCT) to detect horizontal root fracture and to test the influence of a metallic post. Methods: Through the examination of 40 teeth by large-volume CBCT (20-cm height and 15-cm diameter cylinder) at 0.2-mm voxel resolution, 2 observers analyzed the samples for the presence and localization of horizontal root fracture. Results: The values of accuracy in the groups that had no metallic post ranged from 33%-68%, whereas for the samples with the metallic post, values showed a wide variation (38%-83%). Intraobserver agreement showed no statistically significant difference between the groups with/without metallic post; both ranged from very weak to weak (kappa, 0.09-0.369). Conclusions: The low accuracy and low intraobserver and interobserver agreement reflect the difficulty in performing an adequate diagnosis of horizontal root fractures through a large-volume CBCT by using a small voxel reconstruction. (J Endod 2012;38:856-859)
Resumo:
The Dom Feliciano Belt, situated in southernmost Brazil and Uruguay, contains a large mass of granite-gneissic rocks (also known as Florianopolis/Pelotas Batholith) formed during the pre-, syn- and post-orogenic phases of the Brasiliano/Pan-African cycle. In the NE extreme of this granitic mass, pre-, syn- and post-tectonic granites associated with the Major Gercino Shear Zone (MGSZ) are exposed. The granitic manifestation along the MGSZ can be divided into pre-kinematic tonalitic gneisses, peraluminous high-K calcalkaline early kinematic shoshonitic, and metaluminous post-kinematic granites. U-Pb zircon data suggest an age of 649 +/- 10 Ma for the pre-tectonic gneisses, and a time span from 623 +/- 6 Ma to 588 +/- 3 Ma for the early to post-tectonic magmatism. Negative epsilon Hf (t) values ranging from -4.6 to -14.6 and Hf model ages ranging from 1.64 to 2.39 Ga for magmatic zircons coupled with whole rock Nd model ages ranging from 1.24 to 2.05 Ga and epsilon Nd (t) values ranging from -3.84 to -7.50, point to a crustal derivation for the granitic magmatism. The geochemical and isotope data support a continental magmatic arc generated from melting of dominant Paleoproterozoic crust, and a similar evolution for the granitic batholiths of the eastern Dom Feliciano Belt and western Kaoko Belt. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.
Resumo:
Stress recovery techniques have been an active research topic in the last few years since, in 1987, Zienkiewicz and Zhu proposed a procedure called Superconvergent Patch Recovery (SPR). This procedure is a last-squares fit of stresses at super-convergent points over patches of elements and it leads to enhanced stress fields that can be used for evaluating finite element discretization errors. In subsequent years, numerous improved forms of this procedure have been proposed attempting to add equilibrium constraints to improve its performances. Later, another superconvergent technique, called Recovery by Equilibrium in Patches (REP), has been proposed. In this case the idea is to impose equilibrium in a weak form over patches and solve the resultant equations by a last-square scheme. In recent years another procedure, based on minimization of complementary energy, called Recovery by Compatibility in Patches (RCP) has been proposed in. This procedure, in many ways, can be seen as the dual form of REP as it substantially imposes compatibility in a weak form among a set of self-equilibrated stress fields. In this thesis a new insight in RCP is presented and the procedure is improved aiming at obtaining convergent second order derivatives of the stress resultants. In order to achieve this result, two different strategies and their combination have been tested. The first one is to consider larger patches in the spirit of what proposed in [4] and the second one is to perform a second recovery on the recovered stresses. Some numerical tests in plane stress conditions are presented, showing the effectiveness of these procedures. Afterwards, a new recovery technique called Last Square Displacements (LSD) is introduced. This new procedure is based on last square interpolation of nodal displacements resulting from the finite element solution. In fact, it has been observed that the major part of the error affecting stress resultants is introduced when shape functions are derived in order to obtain strains components from displacements. This procedure shows to be ultraconvergent and is extremely cost effective, as it needs in input only nodal displacements directly coming from finite element solution, avoiding any other post-processing in order to obtain stress resultants using the traditional method. Numerical tests in plane stress conditions are than presented showing that the procedure is ultraconvergent and leads to convergent first and second order derivatives of stress resultants. In the end, transverse stress profiles reconstruction using First-order Shear Deformation Theory for laminated plates and three dimensional equilibrium equations is presented. It can be seen that accuracy of this reconstruction depends on accuracy of first and second derivatives of stress resultants, which is not guaranteed by most of available low order plate finite elements. RCP and LSD procedures are than used to compute convergent first and second order derivatives of stress resultants ensuring convergence of reconstructed transverse shear and normal stress profiles respectively. Numerical tests are presented and discussed showing the effectiveness of both procedures.
Resumo:
In order to obtain a better understanding about the influence of post-depositional diagenesis on speleothem 230Th/U-ages and paleoclimate variability during Marine Isotope Stage (MIS) 5 in northern Germany, four stalagmites from the Riesenberghöhle (RBH) were investigated by thin section analysis, 230Th/U-dating as well as stable oxygen and carbon isotope and laser ablation inductively coupled mass spectrometry (LA-ICPMS) trace element analysis. The RBH is located in the Weser Hills and is one of the northernmost limestone caves in Germany.rnMulti collector (MC) ICPMS 230Th/U-ages and thin section analysis of the RBH stalagmites shows that some growth phases of the stalagmites were diagenetically altered after their deposition. The impact of post-depositional diagenesis (PDD) on the 230Th/U-ages is modeled, and potential processes leading to PDD are discussed. In this context, it is suggested that PDD may be induced by rapid climate change at the inception of the GIS.rnDespite of the dating uncertainties resulting from PDD, 230Th/U-dating shows that the RBH stalagmites grew during the Eemian and most of the Greenland Interstadials (GIS) during MIS 5. Thus, the growth phases of the RBH stalagmites might be related to a reorganization of the Atlantic Meridional Overturning Circulation (AMOC). The stable isotope (δ13C and δ18O) and the trace element variability of the stalagmites reflects rapid changes of past temperature and precipitation on millennial and sub-millennial timescales. These past climate changes can be amplified by orbitally forced variations of the July solar insolation at 65°N.
Resumo:
The authors present the long-term results in a series of 44 cases with post-traumatic bone defects solved with muscle-rib flaps, between March 1997 and December 2007. In these cases, we performed 21 serratus anterior-rib flaps (SA-R), 10 latissimus dorsi-rib flaps (LD-R), and 13 LD-SA-R. The flaps were used in upper limb in 18 cases and in lower limb in 26 cases. With an overall immediate success rate of 95.4% (42 of 44 cases) and a primary bone union rate of 97.7% (43 of 44 cases), and despite the few partisans of this method, we consider that this procedure still remains very usefully for small and medium bone defects accompanied by large soft tissue defects.
Resumo:
We present a case of an individual who stabbed himself through the heart with a large knife. Post mortem computed tomography (CT) and CT-angiography were used to assess the stab channel and to reconstruct the sequence of events. After penetrating injuries to the chest, both the intra-thoracic organs and the injury causing instrument may shift (e.g. from pnemothorax) and render forensic reconstructions more challenging. This case report illustrates the potentials and the pitfalls of CT for the reconstruction of penetrating injures to the chest.
Resumo:
We describe a case of a fatal speed flying accident in which the victim was electrocuted, burned and fell from a great height. Post-mortem imaging revealed acute appearing fractures on CT, without bone marrow oedema on MRI. Based on the known clinical imaging findings of bone marrow oedema in acute fractures, we concluded that the speed flyer died from electrocution rather than the fall and that the fractures occurred post-mortem. Radiological imaging augmented the reconstruction of the peri-mortem events. Further research is needed to assess whether bone marrow oedema in acute fractures is a reliable vital sign.
Resumo:
Cranioplasty is a common neurosurgical procedure. Free-hand molding of polymethyl methacrylate (PMMA) cement into complex three-dimensional shapes is often time-consuming and may result in disappointing cosmetic outcomes. Computer-assisted patient-specific implants address these disadvantages but are associated with long production times and high costs. In this study, we evaluated the clinical, radiological, and cosmetic outcomes of a time-saving and inexpensive intraoperative method to mold custom-made implants for immediate single-stage or delayed cranioplasty. Data were collected from patients in whom cranioplasty became necessary after removal of bone flaps affected by intracranial infection, tumor invasion, or trauma. A PMMA replica was cast between a negative form of the patient's own bone flap and the original bone flap with exactly the same shape, thickness, and dimensions. Clinical and radiological follow-up was performed 2 months post-surgery. Patient satisfaction (Odom criteria) and cosmesis (visual analogue scale for cosmesis) were evaluated 1 to 3 years after cranioplasty. Twenty-seven patients underwent intraoperative template-molded patient-specific cranioplasty with PMMA. The indications for cranioplasty included bone flap infection (56%, n = 15), calvarian tumor resection (37%, n = 10), and defect after trauma (7%, n = 2). The mean duration of the molding procedure was 19 ± 7 min. Excellent radiological implant alignment was achieved in 94% of the cases. All (n = 23) but one patient rated the cosmetic outcome (mean 1.4 years after cranioplasty) as excellent (70%, n = 16) or good (26%, n = 6). Intraoperative cast-molded reconstructive cranioplasty is a feasible, accurate, fast, and cost-efficient technique that results in excellent cosmetic outcomes, even with large and complex skull defects.
Resumo:
A 36 m long ice core down to bedrock from the Cerro Tapado glacier (5536 m a.s.l, 30°08' S, 69°55' W) was analyzed to reconstruct past climatic conditions for Northern Chile. Because of the marked seasonality in the precipitation (short wet winter and extended dry summer periods) in this region, major snow ablation and related post-depositional processes occur on the glacier surface during summer periods. They include predominantly sublimation and dry deposition. Assuming that, like measured during the field campaign, the enrichment of chloride was always related to sublimation, the chemical record along the ice core may be applied to reconstruct the history of such secondary processes linked to the past climatic conditions over northern Chile. For the time period 1962–1999, a mean annual net accumulation of 316 mm water equivalent (weq) and 327 mm weq loss by sublimation was deduced by this method. This corresponds to an initial total annual accumulation of 539 mm weq. The annual variability of the accumulation and sublimation is related with the Southern Oscillation Index (SOI): higher net-accumulation during El-Niño years and more sublimation during La Niña years. The deepest part of the ice record shows a time discontinuity; with an ice body deposited under different climatic conditions: 290 mm higher precipitation but with reduced seasonal distribution (+470 mm in winter and –180 mm in summer) and –3°C lower mean annual temperature. Unfortunately, its age is unknown. The comparison with regional proxy data however let us conclude that the glacier buildup did most likely occur after the dry mid-Holocene.
Resumo:
Multislice-computed tomography (MSCT) and magnetic resonance imaging (MRI) are increasingly used for forensic purposes. Based on broad experience in clinical neuroimaging, post-mortem MSCT and MRI were performed in 57 forensic cases with the goal to evaluate the radiological methods concerning their usability for forensic head and brain examination. An experienced clinical radiologist evaluated the imaging data. The results were compared to the autopsy findings that served as the gold standard with regard to common forensic neurotrauma findings such as skull fractures, soft tissue lesions of the scalp, various forms of intracranial hemorrhage or signs of increased brain pressure. The sensitivity of the imaging methods ranged from 100% (e.g., heat-induced alterations, intracranial gas) to zero (e.g., mediobasal impression marks as a sign of increased brain pressure, plaques jaunes). The agreement between MRI and CT was 69%. The radiological methods prevalently failed in the detection of lesions smaller than 3mm of size, whereas they were generally satisfactory concerning the evaluation of intracranial hemorrhage. Due to its advanced 2D and 3D post-processing possibilities, CT in particular possessed certain advantages in comparison with autopsy with regard to forensic reconstruction. MRI showed forensically relevant findings not seen during autopsy in several cases. The partly limited sensitivity of imaging that was observed in this retrospective study was based on several factors: besides general technical limitations it became apparent that clinical radiologists require a sound basic forensic background in order to detect specific signs. Focused teaching sessions will be essential to improve the outcome in future examinations. On the other hand, the autopsy protocols should be further standardized to allow an exact comparison of imaging and autopsy data. In consideration of these facts, MRI and CT have the power to play an important role in future forensic neuropathological examination.
Resumo:
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Resumo:
Homicides with a survival of several days are not uncommon in forensic routine work. Reconstructions of these cases by autopsy alone are very difficult and may occasionally lead to unsatisfying results. For the medico-legal reconstruction of these cases, ante-mortem and post-mortem radiological imaging should always be included in the expertise. We report on a case of fatal penetrating stab wounds to the skull in which a case reconstruction was only possible by combining the radiological ante- and post-mortem data with the autopsy findings.
Resumo:
We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform) features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.
Resumo:
This chapter proposed a personalized X-ray reconstruction-based planning and post-operative treatment evaluation framework called iJoint for advancing modern Total Hip Arthroplasty (THA). Based on a mobile X-ray image calibration phantom and a unique 2D-3D reconstruction technique, iJoint can generate patient-specific models of hip joint by non-rigidly matching statistical shape models to the X-ray radiographs. Such a reconstruction enables a true 3D planning and treatment evaluation of hip arthroplasty from just 2D X-ray radiographs whose acquisition is part of the standard diagnostic and treatment loop. As part of the system, a 3D model-based planning environment provides surgeons with hip arthroplasty related parameters such as implant type, size, position, offset and leg length equalization. With this newly developed system, we are able to provide true 3D solutions for computer assisted planning of THA using only 2D X-ray radiographs, which is not only innovative but also cost-effective.