949 resultados para polymeric materials
Resumo:
Supramolecular polyurethanes (SPUs) possess thermoresponsive and thermoreversible properties, and those characteristics are highly desirable in both bulk commodity and value-added applications such as adhesives, shape-memory materials, healable coatings and lightweight, impact-resistant structures (e.g. protection for mobile electronics). A better understanding of the mechanical properties, especially the rate and temperature sensitivity, of these materials are required to assess their suitability for different applications. In this paper, a newly developed SPU with tuneable thermal properties was studied, and the response of this SPU to compressive loading over strain rates from 10−3 to 104 s−1 was presented. Furthermore, the effect of temperature on the mechanical response was also demonstrated. The sample was tested using an Instron mechanical testing machine for quasi-static loading, a home-made hydraulic system for moderate rates and a traditional split Hopkinson pressure bars (SHPBs) for high strain rates. Results showed that the compression stress-strain behaviour was affected significantly by the thermoresponsive nature of SPU, but that, as expected for polymeric materials, the general trends of the temperature and the rate dependence mirror each other. However, this behaviour is more complicated than observed for many other polymeric materials, as a result of the richer range of transitions that influence the behaviour over the range of temperatures and strain rates tested.
Resumo:
Fluorene and thiophene units are commonly used in polymeric materials for electro-optical applications. Due to differences in reactivity, the final composition of polymers containing these components often differs from that used in their preparation. This contribution describes the synthesis of PPV type terpolymers built by fluorene, phenylene and thiophene units and their quantification by CPMAS NMR. The similarity of the three aromatic co-monomers makes it difficult to separate the analytical responses that would allow quantification of each copolymer unit in the chain. In this sense, we show that the combination of dipolar dephased CPMAS with radiofrequency ramp and proper spectral treatment allows a good estimation and quantification of the copolymer constitution. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The need for biodegradable polymers for packaging has fostered the development of novel, biodegradable polymeric materials from natural sources, as an alternative to reduce amount of waste and environmental impacts. The present investigation involves the synthesis of chitosan nanoparticles-carboxymethylcellulose films, in view of their increasing areas of application in packaging industry. The entire process consists of 2-steps including chitosan nanoparticles preparation and their incorporation in carboxymethylcellulose films. Uniform and stable particles were obtained with 3 different chitosan concentrations. The morphology of chitosan nanoparticles was tested by transmission electron microscopy, revealing the nanoparticles size in the range of 80 to 110 nm. The developed film chitosan nanoparticles-carboxymethylcellulose films were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis, solubility tests, and mechanical analysis. Improvement of thermal and mechanical properties were observed in films containing nanoparticles, with the best results occurring upon addition of nanoparticles with 110 nm size in carboxymethylcellulose films. Practical Application Carboxymethylcellulose films containing chitosan nanoparticles synthesized and characterized in this article could be a potential material for food and beverage packaging applications products due to the increase mechanical properties and high stability. The potential application of the nanocomposites prepared would be in packaging industry to extend the shelf life of products.
Resumo:
Fluorescent probes derivated from auramine, 1-aminopyrene, and 9-aminoacridine containing a malononitrile group are copolymerized with methyl methacrylate. These new fluorescent polymeric materials are studied in solution of different solvents by steady-state and time-resolved emission techniques. Their spectroscopic properties and excited state dynamics are driven by charge transfer from the aromatic group to the electron withdrawing CN groups, and this factor is responsible for the non-exponential emission decay behavior. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Research on solar combisystems for the Nordic and Baltic countries have been carriedout. The aim was to develop competitive solar combisystems which are attractive tobuyers and to educate experts in the solar heating field.The participants of the projects were the universities: Technical University of Denmark,Dalarna University, University of Oslo, Riga Technical University and Lund Institute ofTechnology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S(Denmark), Solentek AB (Sweden), SolarNor (Norway) and SIA Grandeg (Latvia).The project included education, research, development and demonstration. Theactivities started in 2003 and were finished by the end of 2006. A number of Ph.D.studies in Denmark, Sweden and Latvia, and a post-doc. study in Norway were carriedout. Close cooperation between the researchers and the industry partners ensured thatthe results of the projects can be utilized. The industry partners will soon be able tobring the developed systems into the market.In Denmark and Norway the research and development focused on solarheating/natural gas systems, and in Sweden and Latvia the focus was on solarheating/pellet systems. Additionally, Lund Institute of Technology and University ofOslo studied solar collectors of various types being integrated into the building.
Resumo:
Currently new polymeric materials have been developed to replace other of traditionally materials classes. The use of dyes allows to expand and to diversify the applications in the polymeric materials development. In this work the behavior and ability of azo dyes Disperse Blue 79 (DB79) and Disperse Red 73 (DR73) on poly(methyl methacrylate) (PMMA) were studied. Two types of mixtures were used in the production of masterbatches: 1) rheometer 2) solution. Processing by extrusion-blow molding of PMMA was carried out in order to evaluate the applications of polymeric films. Thermal analysis were performed by thermogravimetry to evaluate polymer and azo dyes thermal stability. Colorimetric analysis were obtained through monitoring the spectral variations associated with sys/trans/anti azo dyes isomerization process Colorimetric data were treated and evaluated in accordance to the color system RGB and CIEL*ab, by monitoring the color change as function of time. Mechanical properties, characterized by tensile tests, were evaluated and correlated with the presence and content of azo dyes in the samples. Analyses by scanning electronic microscopy (SEM) were performed on the surfaces of samples to check the azo dye dispersion after the mixing process. It was concluded that the production of PMMA/azo dyes is possible and feasible, and the mixtures produced had synergy of properties for use in various applications
Resumo:
Micro and nanoparticulate systems as drug delivery carriers have achieved successful therapeutic use by enhancing efficacy and reducing toxicity of potent drugs. The improvement of pharmaceutical grade polymers has allowed the development of such therapeutic systems. Microencapsulation is a process in which very thin coatings of inert natural or synthetic polymeric materials are deposited around microsized particles of solids or around droplets. Products thus formed are known as microparticles. Xylan is a natural polymer abundantly found in nature. It is the most common hemicellulose, representing more than 60% of the polysaccharides existing in the cell walls of corn cobs, and is normally degraded by the bacterial enzymes present in the colon of the human body. Therefore, this polymer is an eligible material to produce colon-specific drug carriers. The aim of this study was to evaluate the technological potential of xylan for the development of colon delivery systems for the treatment of inflammatory bowel diseases. First, coacervation was evaluated as a feasible method to produce xylan microcapsules. Afterwards, interfacial cross-linking polymerization was studied as a method to produce microcapsules with hydrophilic core. Additionally, magnetic xylan-coated microcapsules were prepared in order to investigate the ability of producing gastroresistant systems. Besides, the influence of the external phase composition on the production and mean diameter of microcapsules produced by interfacial cross-linking polymerization was investigated. Also, technological properties of xylan were determined in order to predict its possible application in other pharmaceutical dosage forms
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Present work proposed to map and features the wear mechanisms of structural polymers of engineering derived of the sliding contact with a metallic cylindrical spindle submitted to eccentricity due to fluctuations in it is mass and geometric centers. For this it was projected and makes an experimental apparatus from balancing machine where the cylindrical counterbody was supported in two bearings and the polymeric coupon was situated in a holder with freedom of displacement along counterbody. Thus, the experimental tests were standardized using two position of the two bearings (Fixed or Free) and seven different positions along the counterbody, that permit print different conditions to the stiffness from system. Others parameters as applied normal load, sliding velocity and distance were fixed. In this investigation it was used as coupon two structural polymers of wide quotidian use, PTFE (polytetrafluroethylene) and PEEK (poly-ether-ether-ketone) and the AISI 4140 alloy steel as counterbody. Polymeric materials were characterized by thermal analysis (thermogravimetric, differential scanning calorimetry and dynamic-mechanical), hardness and rays-X diffractometry. While the metallic material was submitted at hardness, mechanical resistance tests and metallographic analysis. During the tribological tests were recorded the heating response with thermometers, yonder overall velocity vibration (VGV) and the acceleration using accelerometers. After tests the wear surface of the coupons were analyzed using a Scanning Electronic Microscopy (SEM) to morphological analysis and spectroscopy EDS to microanalysis. Moreover the roughness of the counterbody was characterized before and after the tribological tests. It was observed that the tribological response of the polymers were different in function of their distinct molecular structure. It were identified the predominant wear mechanisms in each polymer. The VGV of the PTFE was smaller than PEEK, in the condition of minimum stiffness, in function of the higher loss coefficient of that polymer. Wear rate of the PTFE was more of a magnitude order higher than PEEK. With the results was possible developed a correlation between the wear rate and parameter (E/ρ)1/2 (Young modulus, E, density, ρ), proportional at longitudinal elastic wave velocity in the material.
Resumo:
Chitin and chitosan are nontoxic, biodegradable and biocompatible polymers produced by renewable natural sources with applications in diverse areas such as: agriculture, textile, pharmaceutical, cosmetics and biomaterials, such as gels, films and other polymeric membranes. Both have attracted greater interest of scientists and researchers as functional polymeric materials. In this context, the objective of this study was to take advantage of the waste of shrimp (Litopenaeus vannamei and Aristeus antennatus) and crabs (Ucides cordatus) from fairs, beach huts and restaurant in Natal/RN for the extraction of chitin and chitosan for the production of membranes by electrospinning process. The extraction was made through demineralization, deproteinization, deodorization and deacetylation. Morphological analyzes (SEM and XRD), Thermal analysis (TG and DTG), Spectroscopy in the Region of the Infrared with Transformed of Fourier (FTIR) analysis Calorimetry Differential Scanning (DSC) and mechanical tests for traction were performed. In (XRD) the semicrystalline structure of chitosan can be verified while the chitin had higher crystallinity. In the thermal analysis showed a dehydration process followed by decomposition, with similar behavior of carbonized material. Chitosan showed temperature of maximum degradation lower than chitin. In the analysis by Differential Scanning Calorimetry (DSC) the curves were coherent to the thermal events of the chitosan membranes. The results obtained with (DD) for chitosan extracted from Litopenaeus vannamei and Aristeus antennatus shrimp were (80.36 and 71.00%) and Ucides cordatus crabs was 74.65%. It can be observed that, with 70:30 solutions (v/v) (TFA/DCM), 60 and 90% CH3COOH, occurred better facilitate the formation of membranes, while 100:00 (v/v) (TFA/DCM) had formation of agglomerates. In relation to the monofilaments diameters of the chitosan membranes, it was noted that the capillary-collector distance of 10 cm and tensions of 25 and 30 kV contributed to the reduction of the diameters of membranes. It was found that the Young s modulus decreases with increasing concentration of chitosan in the membranes. 90% CH3COOH contributed to the increase in the deformation resulting in more flexible material. The membranes with 5% chitosan 70:30 (v/v) (TFA/DCM) had higher tensile strength
Resumo:
Low cost seals are made of NBR, Nitrile Butadiene Rubber, a family of unsaturated copolymers that is higher resistant to oils the more content of nitrile have in its composition, although lower its flexibility. In Petroleum Engineering, NBR seal wear can cause fluid leakage and environmental damages, promoting an increasing demand for academic knowledge about polymeric materials candidate to seals submitted to sliding contacts to metal surfaces. This investigation aimed to evaluate tribological responses of a commercial NBR, hardness 73 ± 5 Sh A, polytetrafluoroethylene (PTFE), hardness 60 ± 4 HRE and PTFE with graphite, 68 ± 6 HRE. The testings were performed on a sliding tribometer conceived to explore the tribological performance of stationary polymer plane coupons submitted to rotational cylinder contact surface of steel AISI 52100, 20 ± 1 HRC Hardness, under dry and lubricated (oil SAE 15W40) conditions. After screening testings, the normal load, relative velocity and sliding distance were 3.15 N, 0.8 m/s and 3.2 km, respectively. The temperatures were collected over distances of 3.0±0.5 mm and 750±50 mm far from the contact to evaluate the heating in this referential zone due to contact sliding friction by two thermocouples K type. The polymers were characterized through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The wear mechanisms of the polymer surfaces were analyzed by Scanning Electron Microscopy (SEM) and EDS (Energy-Dispersive X-ray Spectroscopy). NBR referred to the higher values of heating, suggesting higher sliding friction. PTFE and PTFE with graphite showed lower heating, attributed to the delamination mechanism
Resumo:
Research for better performance materials in biomedical applications are constants. Thus recent studies aimed at the development of new techniques for modification of surfaces. The low pressure plasma has been highlighted for its versatility and for being environmentally friendly, achieving good results in the modification of physic chemical properties of materials. However, it is requires an expensive vacuum system and cannot able to generate superficial changes in specific regions. Furthermore, it is limits their use in polymeric materials and sensitive terms due to high process temperatures. Therefore, new techniques capable of generating cold plasma at atmospheric pressure (APPJ) were created. In order to perform surface treatments on biomaterials in specific regions was built a prototype capable of generating a cold plasma jet. The prototype plasma generator consists of a high voltage source, a support arm, sample port and a nozzle through which the ionized argon. The device was formed to a dielectric tube and two electrodes. This work was varied some parameters such as position between electrodes, voltage and electrical frequency to verify the behavior of glow discharges. The disc of titanium was polished and there was a surface modification. The power consumed, length, intensity and surface modifications of titanium were analyzed. The energy consumed during the discharges was observed by the Lissajous figure method. To check the length of the jets was realized with Image Pro Plus software. The modifications of the titanium surfaces were observed by optical microscopy (OM ) and atomic force microscopy (AFM ). The study showed that variations of the parameters such as voltage, frequency and geometric position between the electrodes influence the formation of the plasma jet. It was concluded that the plasma jet near room temperature and atmospheric pressure was able to cause modifications in titanium surface
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)