966 resultados para polymer-ceramic composites


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A tannin-phenolic resin (40 wt% of tannin, characterized by H-1 nuclear magnetic resonance (NMR) and C-13 NMR, Fourier transform infrared, thermogravimetry, differential scanning calorimetry) was used to prepare composites reinforced with sisal fibers (30-70 wt%). Inverse gas chromatography results showed that the sisal fibers and the tannin-phenolic thermoset have close values of the dispersive component and also have predominance of acid sites (acid character) at the surface, confirming the favoring of interaction between the sisal fibers and the tannin-phenolic matrix at the interface. The Izod impact strength increased up to 50 wt% of sisal fibers. This composite also showed high storage modulus, and the lower loss modulus, confirming its good fiber/matrix interface, also observed by SEM images. A composite with good properties was prepared from high content of raw material obtained from renewable sources (40 wt% of tannin substituted the phenol in the preparation of the matrix and 50 wt% of matrix was replaced by sisal fibers). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. Energy harvesting devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The design of energy harvesting devices is not obvious, requiring optimization procedures. This paper investigates the influence of pattern gradation using topology optimization on the design of piezocomposite energy harvesting devices based on bending behavior. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Examples of two-dimensional piezocomposite energy harvesting devices are presented and discussed using the proposed method. The numerical results illustrate that pattern gradation constraints help to increase the electric power generated in a load resistor and guides the problem toward a more stable solution. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermoplastic starch (TPS) from industrial non-modified corn starch was obtained and reinforced with natural strands. The influence of the reinforcement on physical-chemical properties of the composites obtained by melt processing has been analyzed. For this purpose, composites reinforced with different amounts of either sisal or hemp strands have been prepared and evaluated in terms of crystallinity, water sorption, thermal and mechanical properties. The results showed that the incorporation of sisal or hemp strands caused an increase in the glass transition temperature (T-g) of the TPS as determined by DMTA. The reinforcement also increased the stiffness of the material, as reflected in both the storage modulus and the Young's modulus. Intrinsic mechanical properties of the reinforcing fibers showed a lower effect on the final mechanical properties of the materials than their homogeneity and distribution within the matrix. Additionally, the addition of a natural latex plasticizer to the composite decreased the water absorption kinetics without affecting significantly the thermal and mechanical properties of the material. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A whisker is a common name of single crystalline inorganic fibre of small dimensions, typically 0.5-1 μm in diameter and 20-50 μm in length. Whiskers are mainly used as reinforcement of ceramics. This work describes the synthesis and characterisation of new whisker types. Ti0.33Ta0.33Nb0.33CxN1-x, TiB2, B4C, and LaxCe1-xB6 have been prepared by carbothermal vapour–liquid–solid (CTR-VLS) growth mechanisms in the temperature range 900-1800°C, in argon or nitrogen. Generally, carbon and different suitable oxides were used as whisker precursors. The oxides reacted via a carbothermal reduction process. A halogenide salt was added to form gaseous metal halogenides or oxohalogenides and small amount of a transition metal was added to catalyse the whisker growth. In this mechanism, the whisker constituents are dissolved into the catalyst, in liquid phase, which becomes supersaturated. Then a whisker could nucleate and grow out under continuous feed of constituents. The syntheses of TiC, TiB2, and B4C were followed at ordinary synthesis conditions by means of mass spectrometry (MS), thermogravimetry (TG), differential thermal analysis (DTA) and quenching. The main reaction starting temperatures and reaction time for the different mixtures was revealed, and it was found that the temperature inside the crucible during the reactions was up to 100°C below the furnace set-point, due to endothermic nature of the reactions. Quench experiments showed that whiskers were formed already when reaching the temperature plateau, but the yield increased fast with the holding time and reached a maximum after about 20-30 minutes. Growth models for whisker formation have been proposed. Alumina based composites reinforced by (2-5 vol.%) TiCnano and TiNnano and 25 vol.% of carbide, and boride phases (whiskers and particulates of TiC, TiN, TaC, NbC, (Ti,Ta)C, (Ti,Ta,Nb)C, SiC, TiB2 and B4C) have been prepared by a developed aqueous colloidal processing route followed by hot pressing for 90 min at 1700°C, 28 MPa or SPS sintering for 5 minutes at 1200-1600°C and 75 MPa. Vickers indentation measurements showed that the lowest possible sintering temperature is to prefer from mechanical properties point of view. In the TiNnano composites the fracture mode was typically intergranular, while it was transgranular in the SiCnano composites. The whisker and particulate composites have been compared in terms of e.g. microstructure and mechanical properties. Generally, additions of whiskers yielded higher fracture toughness compared to particulates. Composites of commercially available SiC whiskers showed best mechanical properties with a low spread but all the other whisker phases, especially TiB2, exhibited a great potential as reinforcement materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tradicionalmente, la fabricación de materiales compuestos de altas prestaciones se lleva a cabo en autoclave mediante la consolidación de preimpregnados a través de la aplicación simultánea de altas presiones y temperatura. Las elevadas presiones empleadas en autoclave reducen la porosidad de los componentes garantizando unas buenas propiedades mecánicas. Sin embargo, este sistema de fabricación conlleva tiempos de producción largos y grandes inversiones en equipamiento lo que restringe su aplicación a otros sectores alejados del sector aeronáutico. Este hecho ha generado una creciente demanda de sistemas de fabricación alternativos al autoclave. Aunque estos sistemas son capaces de reducir los tiempos de producción y el gasto energético, por lo general, dan lugar a materiales con menores prestaciones mecánicas debido a que se reduce la compactación del material al aplicar presiones mas bajas y, por tanto, la fracción volumétrica de fibras, y disminuye el control de la porosidad durante el proceso. Los modelos numéricos existentes permiten conocer los fundamentos de los mecanismos de crecimiento de poros durante la fabricación de materiales compuestos de matriz polimérica mediante autoclave. Dichos modelos analizan el comportamiento de pequeños poros esféricos embebidos en una resina viscosa. Su validez no ha sido probada, sin embargo, para la morfología típica observada en materiales compuestos fabricados fuera de autoclave, consistente en poros cilíndricos y alargados embebidos en resina y rodeados de fibras continuas. Por otro lado, aunque existe una clara evidencia experimental del efecto pernicioso de la porosidad en las prestaciones mecánicas de los materiales compuestos, no existe información detallada sobre la influencia de las condiciones de procesado en la forma, fracción volumétrica y distribución espacial de los poros en los materiales compuestos. Las técnicas de análisis convencionales para la caracterización microestructural de los materiales compuestos proporcionan información en dos dimensiones (2D) (microscopía óptica y electrónica, radiografía de rayos X, ultrasonidos, emisión acústica) y sólo algunas son adecuadas para el análisis de la porosidad. En esta tesis, se ha analizado el efecto de ciclo de curado en el desarrollo de los poros durante la consolidación de preimpregnados Hexply AS4/8552 a bajas presiones mediante moldeo por compresión, en paneles unidireccionales y multiaxiales utilizando tres ciclos de curado diferentes. Dichos ciclos fueron cuidadosamente diseñados de acuerdo a la caracterización térmica y reológica de los preimpregnados. La fracción volumétrica de poros, su forma y distribución espacial se analizaron en detalle mediante tomografía de rayos X. Esta técnica no destructiva ha demostrado su capacidad para analizar la microestructura de materiales compuestos. Se observó, que la porosidad depende en gran medida de la evolución de la viscosidad dinámica a lo largo del ciclo y que la mayoría de la porosidad inicial procedía del aire atrapado durante el apilamiento de las láminas de preimpregnado. En el caso de los laminados multiaxiales, la porosidad también se vio afectada por la secuencia de apilamiento. En general, los poros tenían forma cilíndrica y se estaban orientados en la dirección de las fibras. Además, la proyección de la población de poros a lo largo de la dirección de la fibra reveló la existencia de una estructura celular de un diámetro aproximado de 1 mm. Las paredes de las celdas correspondían con regiones con mayor densidad de fibra mientras que los poros se concentraban en el interior de las celdas. Esta distribución de la porosidad es el resultado de una consolidación no homogenea. Toda esta información es crítica a la hora de optimizar las condiciones de procesado y proporcionar datos de partida para desarrollar herramientas de simulación de los procesos de fabricación de materiales compuestos fuera de autoclave. Adicionalmente, se determinaron ciertas propiedades mecánicas dependientes de la matriz termoestable con objeto de establecer la relación entre condiciones de procesado y las prestaciones mecánicas. En el caso de los laminados unidireccionales, la resistencia interlaminar depende de la porosidad para fracciones volumétricas de poros superiores 1%. Las mismas tendencias se observaron en el caso de GIIc mientras GIc no se vio afectada por la porosidad. En el caso de los laminados multiaxiales se evaluó la influencia de la porosidad en la resistencia a compresión, la resistencia a impacto a baja velocidad y la resistencia a copresión después de impacto. La resistencia a compresión se redujo con el contenido en poros, pero éste no influyó significativamente en la resistencia a compresión despues de impacto ya que quedó enmascarada por otros factores como la secuencia de apilamiento o la magnitud del daño generado tras el impacto. Finalmente, el efecto de las condiciones de fabricación en el proceso de compactación mediante moldeo por compresión en laminados unidireccionales fue simulado mediante el método de los elementos finitos en una primera aproximación para simular la fabricación de materiales compuestos fuera de autoclave. Los parámetros del modelo se obtuvieron mediante experimentos térmicos y reológicos del preimpregnado Hexply AS4/8552. Los resultados obtenidos en la predicción de la reducción de espesor durante el proceso de consolidación concordaron razonablemente con los resultados experimentales. Manufacturing of high performance polymer-matrix composites is normally carried out by means of autoclave using prepreg tapes stacked and consolidated under the simultaneous application of pressure and temperature. High autoclave pressures reduce the porosity in the laminate and ensure excellent mechanical properties. However, this manufacturing route is expensive in terms of capital investment and processing time, hindering its application in many industrial sectors. This fact has driven the demand of alternative out-of-autoclave processing routes. These techniques claim to produce composite parts faster and at lower cost but the mechanical performance is also reduced due to the lower fiber content and to the higher porosity. Corrient numerical models are able to simulate the mechanisms of void growth in polymer-matrix composites processed in autoclave. However these models are restricted to small spherical voids surrounded by a viscous resin. Their validity is not proved for long cylindrical voids in a viscous matrix surrounded by aligned fibers, the standard morphology observed in out-of-autoclave composites. In addition, there is an experimental evidence of the detrimental effect of voids on the mechanical performance of composites but, there is detailed information regarding the influence of curing conditions on the actual volume fraction, shape and spatial distribution of voids within the laminate. The standard techniques of microstructural characterization of composites (optical or electron microscopy, X-ray radiography, ultrasonics) provide information in two dimensions and are not always suitable to determine the porosity or void population. Moreover, they can not provide 3D information. The effect of curing cycle on the development of voids during consolidation of AS4/8552 prepregs at low pressure by compression molding was studied in unidirectional and multiaxial panels. They were manufactured using three different curing cycles carefully designed following the rheological and thermal analysis of the raw prepregs. The void volume fraction, shape and spatial distribution were analyzed in detail by means of X-ray computed microtomography, which has demonstrated its potential for analyzing the microstructural features of composites. It was demonstrated that the final void volume fraction depended on the evolution of the dynamic viscosity throughout the cycle. Most of the initial voids were the result of air entrapment and wrinkles created during lay-up. Differences in the final void volume fraction depended on the processing conditions for unidirectional and multiaxial panels. Voids were rod-like shaped and were oriented parallel to the fibers and concentrated in channels along the fiber orientation. X-ray computer tomography analysis of voids along the fiber direction showed a cellular structure with an approximate cell diameter of 1 mm. The cell walls were fiber-rich regions and porosity was localized at the center of the cells. This porosity distribution within the laminate was the result of inhomogeneous consolidation. This information is critical to optimize processing parameters and to provide inputs for virtual testing and virtual processing tools. In addition, the matrix-controlled mechanical properties of the panels were measured in order to establish the relationship between processing conditions and mechanical performance. The interlaminar shear strength (ILSS) and the interlaminar toughness (GIc and GIIc) were selected to evaluate the effect of porosity on the mechanical performance of unidirectional panels. The ILSS was strongly affected by the porosity when the void contents was higher than 1%. The same trends were observed in the case of GIIc while GIc was insensitive to the void volume fraction. Additionally, the mechanical performance of multiaxial panels in compression, low velocity impact and compression after impact (CAI) was measured to address the effect of processing conditions. The compressive strength decreased with porosity and ply-clustering. However, the porosity did not influence the impact resistance and the coompression after impact strength because the effect of porosity was masked by other factors as the damage due to impact or the laminate lay-up. Finally, the effect of the processing conditions on the compaction behavior of unidirectional AS4/8552 panels manufactured by compression moulding was simulated using the finite element method, as a first approximation to more complex and accurate models for out-of autoclave curing and consolidation of composite laminates. The model parameters were obtained from rheological and thermo-mechanical experiments carried out in raw prepreg samples. The predictions of the thickness change during consolidation were in reasonable agreement with the experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a straightforward production pathway of polymer matrix composites with increased dielectric constant for dielectric elastomer actuators (DEAs). Up to date, the approach of using composites made of high dielectric constant ceramics and insulating polymers has not evidenced any improvement in the performance of DEA devices, mainly as a consequence of the ferroelectric nature of the employed ceramics. We propose here an unexplored alternative to these traditional fillers, introducing calcium copper titanate (CCTO) CaCu3Ti4O12, which has a giant dielectric constant making it very suitable for capacitive applications. All CCTO-polydimethylsiloxane (PDMS) composites developed display an improved electro-mechanical performance. The largest actuation improvement was achieved for the composite with 5.1 vol% of CCTO, having an increment in the actuation strain of about 100% together with a reduction of 25% in the electric field compared to the raw PDMS matrix.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work combined compression moulding with subsequent super-critical carbonation treatment (100 bar, 60 °C, 24 h) to fabricate cement and/or lime based ceramic composites with various aggregates. Composites were examined using mechanical testing, XRD, He pycnometry and thin-section petrography. Composites with lime-only binders were significantly weaker than those with cement-lime binders regardless of the degree of carbonation. Flexural strengths in excess of >10 MPa were routinely achieved in large (>100 mm) specimens. Aggregate type (calcareous vs. siliceous) had a significant effect on the microstructure and properties of the composites. Calcareous aggregates appear to augment the strength enhancement effected during super-critical carbonation by encouraging preferential precipitation of calcite at the binder-aggregate interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aromatic thermosetting copolyester (ATSP) has promise in high-temperature applications. It can be employed as a bulk polymer, as a coating and as a matrix for carbon fiber composites (ATSP/C composites). This work focuses on the applications of high performance ATSP/C composites. The morphology of the ATSP matrix in the presence of carbon fiber was studied. The effect of liquid crystalline character of starting oligomers used to prepare ATSP on the final crystal structure of the ATSP/C composite was evaluated. Matrices obtained by crosslinking of both liquid crystalline oligomers (ATSP2) and non-liquid crystalline oligomers (ATSP1) tend to crystallize in presence of carbon fibers. The crystallite size of ATSP2 is 4 times that of ATSP1. Composites made from ATSP2 yield tougher matrices compared to those made from ATSP1. Thus toughened matrices could be achieved without incorporating any additives by just changing the morphology of the final polymer. The flammability characteristics of ATSP were also studied. The limiting oxygen index (LOI) of bulk ATSP was found to be 40% whereas that of ATSP/C composites is estimated to be 85%. Thus, ATSP shows potential to be used as a flame resistant material, and also as an aerospace reentry shield. Mechanical properties of the ATSP/C composite were characterized. ATSP was observed to bond strongly with reinforcing carbon fibers. The tensile strength, modulus and shear modulus were comparable to those of conventionally used high temperature epoxy resins. ATSP shows a unique capability for healing of interlaminar cracks on application of heat and pressure, via the Interchain Transesterification Reaction (ITR). ITR can also be used for reduction in void volume and healing of microcracks. Thus, ATSP resin systems provide a unique intrinsic repair mechanism compared to any other thermosetting systems in use today. Preliminary studies on measurement of residual stresses for ATSP/C composites indicate that the stresses induced are much lower than that in epoxy/C composites. Thermal fatigue testing suggests that ATSP shows better resistance to microcracking compared to epoxy resins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends, with varying concentrations, were prepared by melt-mixing technique. The miscibility is ensured by fixing the acrylonitrile (AN) content of styrene acrylonitrile (SAN) as 25% by weight. The blends were transparent as well. The Fourier transform infrared spectroscopic (FTIR) studies did not reveal any specific interactions, supporting the well accepted 'copolymer repulsion effect' as the driving mechanism for miscibility. Addition of SAN increased the stability of PMMA towards ultraviolet (UV) radiations and thermal degradation. Incorporation of even 0.05% by weight of multi-walled carbon nanotubes (MWCNTs) significantly improved the UV absorbance and thermal stability. Moreover, the composites exhibited good strength and modulus. However, at higher concentrations of MWCNTs (0.5 and 1% by weight) the thermo-mechanical properties experienced deterioration, mainly due to the agglomeration of MWCNTs. It was observed that composites with 0.05% by weight of finely dispersed and well distributed MWCNTs provided excellent protection in most extreme climatic conditions. Thus, PMMA/SAN/MWCNTs composites can act as excellent light screens and may be useful, as cost-effective UV absorbers, in the outdoor applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymer-based materials are extensively used in various applications such as aircrafts, civilian structures, oil and gas platforms and electronics. They are, however, inherently damage prone and over time, the formation of cracks and microscopic damages influences the thermo-mechanical and electrical properties, which eventually results in the total failure of the materials. This paper provides an overview of the principal causes of cracking in polymer and composites and summarizes the recent progress in the development of non-destructive techniques in crack detection. Furthermore, recent progress in the development of bio-inspired self-healing methods in autonomic repair is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Development of new chemical approaches for preparation of engineered carbon-based fillers is critical for high-performance applications. Herein, an efficient method for covalent functionalization of polyacrylonitrile-based carbon fibre through azo radical addition under mild condition is demonstrated. In this way, isobutyronitrile radicals in situ produced from thermal decomposition of 2,2′-azobisisobutyronitrile (AIBN), were covalently grafted on milled carbon fibre (MCF) surface, assisted by microwave irradiation, as evidenced by FTIR, Raman, and TGA analysis. The grafted isobutyronitriles on MCF surface (n-MCF) were applied for further MCF amino-functionalization (a-MCF) via nucleophilic reaction of an amine-rich compound. Then, both pure MCF and a-MCF were incorporated into epoxy matrix; and its curing process and thermo-physical properties were investigated using DSC, rheometry, DMA, TGA, and flexural analysis. The Tg and flexural strength of epoxy/a-MCF composites, compared to epoxy/MCF, increased by ∼3.5% and ∼10.2%, resulting from good adhesion between a-MCF and epoxy matrix which confirmed by SEM observations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The drive towards rapid cure thermosetting composites requires a better understanding of the residual stresses that develop during curing. This study investigates the impact of residual stresses on the interlaminar shear strength of resin-infused epoxy/anhydride carbon-fibre laminates. The magnitude of the residual stress was varied by changing the initial injection cure temperature between 75 °C and 145 °C. The corresponding cycle times and the final glass transition temperature of the resin were also measured. The experimentally measured chemical shrinkage and thermal expansion properties of the resin after vitrification were used as inputs to a finite element analysis to calculate the peak residual stresses in the composite. An increase in the initial cure temperature from 85 to 135 °C resulted in an increase of 25% in the residual stress, which led to an experimentally measured reduction in the composite's short beam shear strength of approximately 16% (8 MPa), in good agreement with model prediction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper compares and reviews the recommendations and contents of the guide for the design and construction of externally bonded FRP systems for strengthening concrete structures reported by ACI committee 440 and technical report of Externally bonded FRP reinforcement for RC structures (FIB 14) in application of carbon fiber reinforced polymer (CFRP) composites in strengthening of an aging reinforced concrete headstock. The paper also discusses the background, limitations, strengthening for flexure and shear, and other related issues in use of FRP for strengthening of a typical reinforced concrete headstock structure such as durability, de-bonding, strengthening limits, fire and environmental conditions. A case study of strengthening of a bridge headstock using FRP composites is presented as a worked example in order to illustrate and compare the differences between these two design guidelines when used in conjunction with the philosophy of the Austroads (1992) bridge design code.