994 resultados para polylactic acid-polyglycolic acid copolymer


Relevância:

50.00% 50.00%

Publicador:

Resumo:

A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), (1)H and (13)C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, (13)C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Nanostructured poly(ε-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

As the focus on developing new polymer electrolytes continues to intensify in the area of alternative energy conversion and storage devices, the rational design of polyelectrolytes with high single ion transport rates has emerged as a primary strategy for enhancing device performance. Previously, we reported a series of sulfonate based copolymer ionomers based on using mixed bulky quaternary ammonium cations and sodium cations as the ionomer counterions. This led to improvements in the ionic conductivity and an apparent decoupling from the Tg of the ionomer. In this article, we have prepared a new series of ionomers based on the homopolymer of poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) using differing sizes of the ammonium counter-cations. We observe a decreasing Tg with increasing the bulkiness of the quaternary ammonium cation, and an increasing degree of decoupling from Tg within these systems. Somewhat surprisingly, phase separation is observed in this homopolymer system, as evidenced from multiple impedance arcs, Raman mapping and SEM. The thermal properties, morphology and the effect of plasticizer on the transport properties in these ionomers are also presented. The addition of 10 wt% plasticizer increased the ionic conductivity between two and three orders of magnitudes leading to materials that may have applications in sodium based devices. This journal is

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The interaction between cationic surfactants and isopropylacrylamide-acrylic acid-ethyl methacrylate (IPA:AA:EMA) terpolymers has been investigated using steady-state fluorescence and spectrophotometric measurements to assess the effect of the polymer composition on the aggregation process and terpolymers' thermosensitivities. Micropolarity studies using pyrene show that the interaction of cationic surfactants with IPA:AA:EMA terpolymers occurs at surfactant concentrations much smaller than that observed for the pure surfactant in aqueous solution. The critical aggregation concentration (CAC) values decrease with both the hydrocarbon length of the surfactant and the content of ethyl methacrylate. These results were interpreted as a manifestation of the increasing contribution of attractive hydrophobic and electrostatic forces between negatively charged polymer chains and positively charged surfactant molecules. The increase of ethyl methacrylate in the copolymers lowers the CAC due to the larger hydrophobic character of the polymer backbone. The cloud point determination reveals that the lower critical solution temperatures (LCST) depend strongly on the copolymer composition and surfactant nature. The binding of surfactants molecules to the polymer chain screens the electrostatic repulsion between the carboxylic groups inducing a conformational transition and the dehydration of the polymer chain.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The interaction between sodium dodecylsulfate (SDS) and acrylic acid (AA)-ethyl methacrylate (EMA) copolymers has been investigated using steady state fluorescence and conductimetric measurements to assess the effect of the polymer composition on the aggregation process. Micropolarity studies using the ratio between the emission intensities of the vibronic bands of pyrene (I-1/I-3) and the shift of the fluorescence emission of pyrene-3-carboxaldehyde show, that the interaction of SDS with AA-EMA copolymers occurs at surfactant concentrations smaller than that observed for the pure surfactant in water and depends on the copolymer composition. The increase of ethyl methacrylate in the copolymers lowers the critical aggregation concentration (CAC) due to the larger hydrophobic character of the polymer backbone. The formation of aggregates on the macromolecule is induced mainly, by hydrophobic interactions, but the process is also influenced by the ionic strength due to the counter-ions of the polyelectrolyte.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A series of N-isopropylacrylamide (NIPAM)-acrylic acid-ethyl methacrylate terpolymers with varied monomer compositions was prepared by radical polymerization. The solution behavior of these polymers was studied in dilute aqueous solution using spectrophotometry, fluorescence spectroscopy and high-sensitivity differential scanning calorimetry. The results obtained revealed that the lower critical solution temperatures depend strongly on the copolymer composition, solution pH and ionic strength. At a high pH, the ionization of acrylic acid (AA) units leads to an increase in solution cloud points (T-c). Solutions of polymers containing 10% or less of AA display a constant T-c for pH above 5.5, with 15% there is a continuous increase in T-c with pH and, for higher AA contents, no clouding was observed within the studied temperature range. Fluorescence probe studies were conducted by following the I (1)/I (3) ratio of pyrene vibronic bands and the emission of anilinonaphtalene sulfonic acid, sodium salt (ANS), both approaches revealing the existence of hydrophobic domains for polymers with higher ethyl methacrylate content at temperatures lower than T-c, suggesting some extent of aggregation and/or a coil-to-globule transition. Scanning calorimetry measurements showed an endothermic transition at temperatures agreeing with the previously detected cloud points. Moreover, the transition curves became broader and with a smaller transition enthalpy, as both the AA content and the solution pH were increased. These broader transitions were interpreted to be the result of a wider molecular distribution upon polymer ionization, hence, displaying varied solution properties. The decrease in transition enthalpy was rationalized as a consequence of reminiscent hydration of NIPAM units, even after phase separation, owing to the presence of electric charges along the polymer chain.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work, new promising proton conducting fuel cell membrane materials were characterized in terms of their structure and dynamic properties using solid-state nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction. Structurally different, phosphonic acid (PA) containing materials were systematically evaluated for possible high-temperature operation (e.g. at T>100°C). Notably, 1H, 2H and 31P magic angle spinning (MAS) NMR provided insight into local connectivities and dynamics of the hydrogen bonded network, while packing arrangements were identified by means of heteronuclear dipolar recoupling techniques.rnThe first part of this work introduced rather crystalline, low molecular weight ionomers for proton conducting membranes, where six different geometries such as line, triangle, screw, tetrahedron, square and hexagon, were investigated. The hexagon was identified as the most promising geometry with high-temperature bulk proton conductivities in the range of 10-3 Scm-1 at a relative humidity of 50%. However, 2H NMR and TGA-MS data suggest that the bulk proton transport is mainly due to the presence of crystal water. Single crystal X-ray data revealed that in the tetrahedron phosphonic acids form tetrameric clusters isolating the mobile protons while the phosphonic acids in the hexagon form zigzag-type pathways through the sample.rnThe second part of this work demonstrates how acid-base pairing and the choice of appropriate spacers may influence proton conduction. Different ratios of statistical copolymers of poly (vinylphosphonic acid) and poly (4-vinylpyridine) were measured to derive information about the local structure and chemical changes. Though anhydrous proton conductivities of all statistical copolymers are rather poor, the conductivity increases to 10-2 S cm-1 when exposing the sample to relative humidity of 80%. In contrast to PVPA, anhydride formation of phosphonic acids in the copolymer is not reversible even when exposing the sample to a relative humidity of 100%.rnIn addition, the influence of both spacers and degree of backbone crystallinity on bulk proton conductivity was investigated. Unlike in systems such as poly benzimidazole (PBI), spacers were inserted between the protogenic groups along the backbone. It was found that dilution of the protogenic groups decreases the conductivity, but compared to PVPA, similar apparent activation energies for local motions were obtained from both variable temperature 1H NMR and impedance spectroscopy data. These observations suggest the formation of phosphonic acid clusters with high degrees of local proton motion, where only a fraction of motions contribute to the observable bulk proton conductivity. Additionally, it was shown that gradual changes of the spacer length lead to different morphologies.rnIn summary, applying advanced solid-state NMR and X-ray analysis, structural and dynamic phenomena in proton conducting materials were identified on a molecular level. The results were discussed with respect to different proton conduction mechanisms and may contribute to a more rational design or improvement of proton conducting membranes.rn

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Nanostructured TiO2 photocatalysts with small crystalline sizes have been synthesized by sol-gel using the amphiphilic triblock copolymer Pluronic P123 as template. A new synthesis route, based on the treatment of TiO2 xerogels with acid-ethanol mixtures in two different steps, synthesis and extraction-crystallization, has been investigated, analyzing two acids, hydrochloric and hydriodic acid. As reference, samples have also been prepared by extraction-crystallization in ethanol, being these TiO2 materials amorphous and presenting higher porosities. The prepared materials present different degrees of crystallinity depending on the experimental conditions used. In general, these materials exhibit high surface areas, with an important contribution of microporosity and mesoporosity, and with very small size anatase crystals, ranging from 5 to 7 nm. The activity of the obtained photocatalysts has been assessed in the oxidation of propene in gas phase at low concentration (100 ppmv) under a UVA lamp with 365 nm wavelength. In the conditions studied, these photocatalysts show different activities in the oxidation of propene which do not depend on their surface areas, but on their crystallinity and band gap energies, being sample prepared with HCl both during synthesis and in extraction-crystallizations steps, the most active one, with superior performance than Evonik P25.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) melt processed disks and solvent cast films were modified by graft co-polyinerization with acrylic acid (AAc) in methanol solution at ambient temperature using gamma irradiation (dose rate of 4.5 kGy/h). To assess the presence of carboxylic acid groups on the surface, reaction with pentafluorophenol was performed prior to X-ray photoelectron spectroscopy analysis. The grafting yield for all samples increased with monomer concentration (2-15%), and for the solvent cast films, it also increased with dose (2-9 kGy). However, the grafting yield of the melt processed disks was largely independent of the radiation dose (2-8 kGy). Toluidine blue was used to stain the modified materials facilitating, visual information about the extent of carboxylic acid functionalization and depth penetration of the grafted copolymer. Covalent linking of glucosamine to the functionalized surface was achieved using carbodimide chemistry verifying that the modified substrates are suitable for biomolecule attachment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The formation of rare flower like micelles in poly(styrene)-block-poly(4-vinyl pyridine)/poly(acrylic acid) (PS-b-P4VP/PAA) diblock copolymer/homopolymer complexes is reported. The self-assembly as well as the morphological changes in the complexes were induced by the addition of a high molecular weight PAA/ethanol solution into the PS-b-P4VP solution in dimethyl formamide followed by dialyses. The composition-dependent micelles were varying in size and shape with increase in PAA concentration in solution. The complex aggregates in solution were characterized by dynamic light scattering (DLS) whereas morphologies in the solid complexes were observed using transmission electron microscopy (TEM). Flower like micelles are formed in complexes at 20 wt% PAA concentration followed by 'spikey' micellar assemblies at 40 wt% PAA. The size of the micelles was found to be increased upon the addition of PAA into the block copolymer solution. Infrared studies revealed the intermolecular hydrogen bonding interactions between the complementary binding sites on PAA and the P4VP block of the block copolymer. Finally, a model was proposed to explain the self-assembly and morphological transitions in these complexes based on the experimental results obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. Methods The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. Results The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. Conclusion The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women.