925 resultados para poly-L-arginine


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA) on the endothelium-dependent release of vascular superoxide radicals triggered by increased flow. Plasma ascorbyl radical signals measured by direct electron paramagnetic resonance spectroscopy in 25 rabbits increased by 3.8 ± 0.7 nmol/l vs baseline (28.7 ± 1.4 nmol/l, P<0.001) in response to papaverine-induced flow increases of 121 ± 12%. In contrast, after similar papaverine-induced flow increases simultaneously with L-NMMA infusions, ascorbyl levels were not significantly changed compared to baseline. Similar results were obtained in isolated rabbit aortas perfused ex vivo with the spin trap a-phenyl-N-tert-butylnitrone (N = 22). However, in both preparations, this complete blockade was not reversed by co-infusion of excess L-arginine and was also obtained by N-methyl-D-arginine, thus indicating that it is not related to nitric oxide synthase. L-arginine alone was ineffective, as previously demonstrated for NG-methyl-L-arginine ester (L-NAME). In vitro, neither L-arginine nor its analogues scavenged superoxide radicals. This nonspecific activity of methylated arginine analogues underscores the need for careful controls in order to assess nitric oxide effects, particularly those related to interactions with active oxygen species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The drinking behavior responses to centrally administered NG-nitro-L-arginine methyl ester (L-NAME; 10, 20 or 40 µg/µl), an inhibitor of nitric oxide synthase, were studied in satiated rats, with cannulae stereotaxically implanted into the lateral ventricle (LV) and subfornical organ (SFO). Water intake increased in all animals after angiotensin II (ANG II) injection into the LV, with values of 14.2 ± 1.4 ml/h. After injection of L-NAME at doses of 10, 20 or 40 µg/µl into the SFO before injection of ANG II (12 ng/µl) into the LV, water intake decreased progressively and reached basal levels after treatment with 0.15 M NaCl and with the highest dose of L-NAME (i.e., 40 µg). The water intake obtained after 40 µg/µl L-NAME was 0.8 ± 0.01 ml/h. Also, the injection of L-NAME, 10, 20 or 40 µg/µl, into the LV progressively reduced the water intake induced by hypertonic saline, with values of 5.3 ± 0.8, 3.2 ± 0.8 and 0.7 ± 0.01 ml/h, respectively. These results indicate that nitric oxide is involved in the regulation of drinking behavior induced by centrally administered ANG II and cellular dehydration and that the nitric oxide of the SFO plays an important role in this regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

L’immuno-isolation des îlots de Langerhans est proposée comme moyen d’effectuer des transplantations sans prise d’immunosuppresseurs par le patient. Cette immuno-isolation, par l’entremise d’une microcapsule composée d’alginate et de poly-L-lysine (microcapsule APA), protège le greffon d’une éventuelle attaque du système immunitaire du receveur grâce à sa membrane semi-perméable. Cette membrane empêche le système immunitaire du receveur de pénétrer la microcapsule tout en laissant diffuser librement les nutriments, le glucose et l’insuline. Avant l’application de cette technique chez l’humain, quelques défis doivent encore être relevés, dont la biocompatibilité de ce système. La biocompatibilité fait ici référence à la biocompatibilité du biomatériau utilisé pour la fabrication des microcapsules, l’alginate, mais aussi la biocompatibilité des microcapsules reliée à leur stabilité. En effet, il a été remarqué que, lors d’implantation in vivo de microcapsules fabriquées avec de l’alginate non purifiée, ceci induisait un phénomène nommé Réaction de l’Hôte contre la Microcapsule (RHM). De plus, il est connu que la stabilité des microcapsules APA peut influencer leur biocompatibilité puisqu’une microcapsule endommagée ou brisée pourrait laisser s’échapper les cellules du greffon chez le receveur. Nous croyons qu’une compréhension des processus d’initiation de la RHM en fonction de l’efficacité des procédés de purification d’alginate (et donc des quantités de contaminants présents dans l’alginate) ainsi que l’augmentation de la stabilité des microcapsules APA pourront améliorer la biocompatibilité de ce dispositif, ce que tente de démontrer les résultats présentés dans cette thèse. En effet, les résultats obtenus suggèrent que les protéines qui contaminent l’alginate jouent un rôle clé dans l’initiation de la RHM et qu’en diminuant ces quantités de protéines par l’amélioration des procédés de purification d’alginate, on améliore la biocompatibilité de l’alginate. Afin d’augmenter la stabilité des microcapsules APA, nous décrivons une nouvelle technique de fabrication des microcapsules qui implique la présence de liaisons covalentes. Ces nouvelles microcapsules APA réticulées sont très résistantes, n’affectent pas de façon négative la survie des cellules encapsulées et confinent les cellules du greffon à l’intérieur des microcapsules. Cette dernière caractéristique nous permet donc d’augmenter la biocompatibilité des microcapsules APA en protégeant le receveur contre les cellules du greffon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thèse réalisée dans le cadre d'une cotutelle entre l'Université de Montréal et l'Université d'Auvergne en France

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Réalisé en cotutelle avec le Dr James G Martin de l'Université McGill (Meakins-Christie laboratories)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We apply a new X-ray scattering approach to the study of melt-spun filaments of tri-block and random terpolymers prepared from lactide, caprolactone and glycolide. Both terpolymers contain random sequences, in both cases the overall fraction of lactide units is similar to 0.7 and C-13 and H-1 NMR shows the lactide sequence length to be similar to 9-10. A novel representation of the X-ray fibre pattern as series of spherical harmonic functions considerably facilitates the comparison of the scattering from the minority crystalline phase with hot drawn fibres prepared from the poly(L-lactide) homopolymer. Although the fibres exhibit rather disordered structures we show that the crystal structure is equivalent to that displayed by poly(L-lactide) for both the block and random terpolymers. There are variations in the development of a two-phase structure which reflect the differences in the chain architectures. There is evidence that the random terpolymer includes non-lactide units in to the crystal interfaces to achieve a well defined two-phase structure. (c) 2005 Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oral supplements of arginine and citrulline increase local nitric oxide (NO production in the small intestine and this may be harmful under certain circumstances. Gastrointestinal toxicity was therefore reviewed with respect to the intestinal physiology of arginine, citrulline, ornithine, and cystine (which shares the same transporter) and the many clinical trials of supplements of the dibasic amino acids or N-acetylcysteine (NAC. The human intestinal dibasic amino acid transport system has high affinity and low capacity. L-Arginine (but not lysine, ornithine, or D-arginine) induces water and electrolyte secretion that is mediated by NO, which acts as an absorbagogue at low levels and as a secretagogue at high levels. The action of many laxatives is NO mediated and there are reports of diarrhea following oral administration of arginine or ornithine ihine. The clinical data cover a wide span of arginine intakes f rom 3 g/d to > 100 g/d, but the standard of reporting adverse effects (e.g. nausea, vomiting, and diarrhea) was variable. Single doses of 3-6 g rarely provoked side effects and healthy athletes appeared to be more susceptible than diabetic patients to gastrointestinal symptoms at individual doses >9 g. This may relate to an effect of disease on gastrointestinal motility and pharmacokinetics. Most side effects of arginine and NAC occurred at single doses of >9 g in adults >140 mg/kg) often when part of a daily regime of similar to>30 g/d (>174 mmol/d). In the case of arginine, this compares with the laxative threshold of the nonabsorbed disaccharide alcohol, lactitol (74 g or 194 mmol). Adverse effects seemed dependent on the dosage regime and disappeared if divided doses were ingested (unlike lactitol). Large single doses of poorly absorbed amino acids seem to provoke diarrhea. More research is needed to refine dosage strategies that reduce this phenomenon. It is suggested that dipeptide forms of arginine may meet this criterion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The self-assembly in aqueous solution of three novel telechelic conjugates comprising a central hydrophilic polymer and short (trimeric or pentameric) tyrosine end-caps has been investigated. Two of the conjugates have a central poly(oxyethylene) (polyethylene oxide, PEO) central block with different molar masses. The other conjugate has a central poly(l-alanine) (PAla) sequence in a purely amino-acid based conjugate. All three conjugates self-assemble into β-sheet based fibrillar structures, although the fibrillar morphology revealed by cryogenic-TEM is distinct for the three polymers—in particular the Tyr5-PEO6k-Tyr5 forms a population of short straight fibrils in contrast to the more diffuse fibril aggregates observed for Tyr5-PEO2k-Tyr5 and Tyr3-PAla-Tyr3. Hydrogel formation was not observed for these samples (in contrast to prior work on related systems) up to quite high concentrations, showing that it is possible to prepare solutions of peptide–polymer-peptide conjugates with hydrophobic end-caps without conformational constraints associated with hydrogelation. The Tyr5-PEO6k-Tyr5 shows significant PEO crystallization upon drying in contrast to the Tyr5-PEO2k-Tyr5 conjugate. Our findings point to the remarkable ability of short hydrophobic peptide end groups to modulate the self-assembly properties of polymers in solution in model peptide-capped “associative polymers”. Retention of fluidity at high conjugate concentration may be valuable in potential future applications of these conjugates as bioresponsive or biocompatible materials, for example exploiting the enzyme-responsiveness of the tyrosine end-groups

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims: To investigate the effect of N omega-Nitro-L-arginine methyl ester CL-NAME) treatment, known to induce a sustained elevation of blood pressure, on ectonucleotidase activities in kidney membranes of rats. Main methods: L-NAME (30 mg/kg/day) was administered to Wistar rats for 14 days in the drinking water. Enzyme activities were determined colorimetrically and their gene expression patterns were analyzed by semi-quantitative RT-PCR. The metabolism of ATP and the accumulation of adenosine were evaluated by HPLC in kidney membranes from control and hypertensive rats. PKC phosphorylation state was investigated by Western blot. Key findings: We observed an increase in systolic blood pressure from 115 +/- 12 mmHg (control group) to 152 18 mmHg (L-NAME-treated group). Furthermore, the hydrolysis of ATP, ADP, AMP, and p-Nph-5`TMP was also increased (17%, 35%, 27%, 20%, respectively) as was the gene expression of NTPDase2, NTPDase3 and NPP3 in kidneys of hypertensive animals. Phospho-PKC was increased in hypertensive rats. Significance: The general increase in ATP hydrolysis and in ecto-5`-nucleotidase activity suggests a rise in renal adenosine levels and in renal autoregulatory responses in order to protect the kidney against the threat presented by hypertension. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is well known that hypertension is closely associated to the development of vascular diseases and that the inhibition of nitric oxide biosynthesis by administration of N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) leads to arterial hypertension. In the vascular system, extracellular purines mediate several effects: thus, ADP is the most important platelet agonist and recruiting agent, while adenosine, all end product Of nucleotide metabolism, is a vasodilator and inhibitor of platelet activation and recruitment. Members of several families of enzymes, known as ectonucleotidases, including E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolase), E-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase) and 5`-nucleotidase are able to hydrolyze extracellular nucleotides until their respective nucleosides. We investigated the ectonuclectidase activities of serum and platelets from rats made hypertensive by oral administration of L-NAME (30 mg/kg/day for 14 days or 30 mg/kg/day for 14 days Plus 7 days of L-NAME washout, in the drinking water) in comparison to normotensive control rats. L-NAME promoted a significant rise in systolic blood pressure from 112 +/- 9.8 to 158 +/- 23 mmHg. The left ventricle weight index (LVWI) was increased in rats treated with L-NAME for 14 days when compared to control animals. In Serum samples, ATP, ADP and AMP hydrolysis were reduced by about 27%, 36% and 27%, respectively. In platelets, the decrease in ATP, ADP and AMP hydrolysis Was approximately 27%, 24% and 32%, respectively. All parameters recovered after 7 days of L-NAME washout. HPLC demonstrated a reduction in ADP, AMP and hypoxanthine levels by about 64%, 69% and 87%, respectively. In this study, we showed that ectonucleotidase activities are decreased in serum and platelets from L-NAME-treated rats, which should represent an additional risk for the development of hypertension. The modulation of ectonucleotidase activities may represent an approach to antihypertensive therapy via inhibition of spontaneous platelet activation and recruitment, as well as thrombus formation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have shown that rats chronically treated with Arginine (Arg), although normoglycemic, exhibit hyperinsulinemia and decreased blood glucose disappearance rate after an insulin challenge. Attempting to investigate the processes underlying these alterations, male Wistar rats were treated with Arg (35 mg/d), in drinking water, for 4 wk. Rats were then acutely stimulated with insulin, and the soleus and extensorum digitalis longus muscles, white adipose tissue (WAT), and liver were excised for total and/or phosphorylated insulin receptor (IR), IR substrate 1/2, Akt, Janus kinase 2, signal transducer and activator of transcription (STAT) 1/3/5, and p85 alpha/55 alpha determination. Muscles and WAT were also used for plasma membrane (PM) and microsome evaluation of glucose transporter (GLUT) 4 content. Pituitary GH mRNA, GH, and liver IGF-I mRNA expression were estimated. It was shown that Arg treatment: 1) did not affect phosphotyrosine-IR, whereas it decreased phosphotyrosine-IR substrate 1/2 and phosphoserine-Akt content in all tissues studied, indicating that insulin signaling is impaired at post-receptor level; 2) decreased PM GLUT4 content in both muscles and WAT; 3) increased the pituitary GH mRNA, GH, and liver IGF-I mRNA expression, the levels of phosphotyrosine-STAT5 in both muscles, phosphotyrosine-Janus kinase 2 in extensorum digitalis longus, phosphotyrosine-STAT3 in liver, and WAT as well as total p85 alpha in soleus, indicating that GH signaling is enhanced in these tissues; and 4) increased p55 alpha total content in muscles, WAT, and liver. The present findings provide the molecular mechanisms by which insulin resistance and, by extension, reduced GLUT4 content in PM of muscles and WAT take place after chronic administration of Arg, and further suggest a putative role for GH in its genesis, considering its diabetogenic effect. (Endocrinology 150: 2080-2086, 2009)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background/Aim: Nitric oxide (NO) modulates the expression of the chaperone Hsp72 in the heart, and exercise stimulates both NO production and myocardial Hsp72 expression. The main purpose of the study was to investigate whether NO interferes with an exercise-induced myocardial Hsp72 expression. Methods: Male Wistar rats (70-100 days) were divided into control (C, n= 12), L-NAME-treated (L, n= 12), exercise (E, n= 13) and exercise plus L-NAME-treated (EL, n= 20) groups. L-NAME was given in drinking water (700 mg. L(-1)) and the exercise was performed on a treadmill (15-25 m.min(-1), 40-60 min. day(-1)) for seven days. Left ventricle (LV) protein Hsp content, NOS and phosphorylated-NOS (p-NOS) isoforms were measured using Western blotting. The activity of NOS was assayed in LV homogenates by the conversion of [(3)H] L-arginine to [(3)H] L-citrulline. Results: Hsp72 content was increased significantly (223%; p < 0.05) in the E group compared to the C group, but exercise alone did not alter the NOS content, p-NOS isoforms or NOS activity. Contrary to our expectation, L-NAME enhanced (p < 0.05) the exercise-induced Hsp72 content (EL vs. C, L and E groups = 1019%, 548% and 457%, respectively). Although the EL group had increased stimulatory p-eNOS(Ser1177) (over 200%) and decreased inhibitory p-nNOS(Ser852) (similar to 50%) compared to both the E and L groups (p < 0.05), NOS activity was similar in all groups. Conclusions: Our results suggest that exercise-induced cardiac Hsp72 expression does not depend on NO. Conversely, the in vivo L-NAME treatment enhances exercise-induced Hsp72 production. This effect may be due to an increase in cardiac stress. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leishmania chagasi, which causes visceral leishmaniasis in South America, is an obligate intracellular protozoan. Production of nitric oxide by macrophages during the inflammatory response is one of the main microbicidal mechanisms against this parasite. The goal of this study was to evaluate whether L. chagasi infection causes DNA damage in peripheral blood and spleen cells of Balb/c mice and whether such damage may be related to NO production. Balb/c mice were either infected with L chagasi or maintained as controls. The single-cell gel electrophoresis (comet) assay was used to measure DNA damage in peripheral blood and spleen cells, and the Griess reaction was used to measure NO production in the spleen. L chagasi infection induced DNA damage in peripheral blood and spleen cells of infected mice. Macrophages from the control group, challenged with L. chagasi, showed significantly (p < 0.05) greater NO production, compared to non-challenged cells. Treatment of spleen cells with N(G)-monomethyl-L-arginine (LNMMA) caused a significant reduction of NO production and DNA damage (p < 0.05). Our results indicate that L. chagasi induces DNA damage in the peripheral blood and spleen cells and that NO not only causes killing of the parasite but also induces DNA damage in adjacent cells. (C) 2011 Elsevier B.V. All rights reserved.