914 resultados para poly ethylene glycol
Resumo:
Hybrid organic-inorganic ionic conductors, also called ormolytes (organically modified electrolytes), were obtained by dissolution of LiClO 4 in siloxane-poly(propylene glycol) matrixes. The dynamic features of these nanocomposites were studied and correlated to their electrical properties. Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to probe the effects of the temperature and nanocomposite composition on the dynamic behaviors of both the ionic species ( 7Li) and the polymer chains ( 13C). NMR, dc ionic conductivity, and DSC results demonstrate that the Li + mobility is strongly assisted by the segmental motion of the polymer chain above its glass transition temperature. The ac ionic conductivity in such composites is explained by use of the random free energy barrier (RFEB) model, which is agreement with their disordered and heterogenous structures. These solid ormolytes are transparent and flexible, and they exhibit good ionic conductivity at room temperature (up to 10 -4 S/cm). Consequently, they are very promising candidates for use in several applications such as batteries, sensors, and electrochromic and photoelectro-chemical devices.
Resumo:
Samples of paint (P), reused PET (PET-R) and paint/PET-R mixtures (PPET-R) were evaluated using DSC to verify their physical-chemical properties and thermal behavior. Films from paints and PPET-R are visually similar. It was possible to establish that the maximum amount of PET-R that can be added to paint without significantly altering its filming properties is 2%. The cure process (80-203°C) was identified through DSC curves. The kinetic parameters, activation energy (E a) and Arrhenius parameters (A) for the samples containing 0.5 to 1% of PET-R, were calculated using the Flynn-Wall-Ozawa isoconversional method. It was observed that for greater amounts of PET-R added, there is a decrease in the E a values for the cure process. A Kinetic compensation effect (KCE), represented by the equation InA=-2.70+0.31E a was observed for all the samples. The most suitable kinetic model to describe this cure process is the autocatalytic Šesták-Berggreen, model applied to heterogeneous systems. © 2007 Springer Science+Business Media, LLC.
Resumo:
The rapid synthesis of Mn3O4 powders by a two-step process of pyro-synthesis of ethylene glycol-metal nitrate precursor assisted by nitric acid is reported. A new strategy that accelerates the synthesis and allows obtaining highly pure crystalline Mn3O4 is discussed. The structural and morphological characteristics of the Mn3O4 powders are presented and discussed. The mechanism of formation of the Mn3O4 is also discussed. In comparison with other synthesis methods, the present method shows that the proposed route of synthesis has the main advantage of high production of the powder material in a very short time.
Resumo:
By means of in situ IR spectroscopy we investigate the effect of dissolved alkali cations on the electro-oxidation of ethylene glycol on platinum in alkaline media. The results revealed that the increase in the oxidation currents (Li(+) < Na(+) < K(+)) is reflected in the increase in the ratio between carbonate and oxalate produced.
Resumo:
A high molecular weight poly(ethylene oxide)/layered vanadyl phosphate di-hydrate intercalation compound was synthesized via the surfactant-assisted approach. Results confirmed that surfactant molecules were replaced with the polymer, while the lamellar structure of the matrix was retained, and that the material presents high specific surface area. In addition, intercalation produced a more thermally stable polymer as evidenced by thermal analysis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Formation of oriented or aligned micro- and nanofibers using biocompatible materials opens the possibility to obtain engineered tissues that can be used in medicine, environmental engineering, security and defense, among other applications. Pectin, a heteropolysaccharide, is a promising material to be incorporated into the fibers because, besides being biocompatible, this material is also biodegradable and bioactive. In this work, the formation of oriented fibers using solutions containing pectin and polyethylene oxide (biocompatible polymers), and chloroform (as the solvent) is investigated. The injection of solution into an intense electric field defined between two parallel electrodes was used to obtain oriented fibers. This novel approach is a modification of the conventional electrospinning process. The presence of pectin in the fibers was confirmed by FTIR analysis. Fibers with diameters of hundreds of nanometers and several centimeters long can be collected. The incorporation of pectin leads to a higher variation of the diameter of the fibers, and a trend to larger fiber diameters. This behavior can be related to the presence of pectin clusters in the fibers. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.057203jes] All rights reserved.
Resumo:
Poly(ethylene tereftalate) (PET) is a polymer highly susceptible to the hydrolytic reactions that occur during applications and mainly in thermomechanical processing. These reactions lead to the decrease of molecular weight of the polymer, limiting the recycling number of the material. The reactive extrusion of the PET in presence of chain extenders is an alternative to recover mechanical and rheological properties that were depreciated by the polymer degradation. In this study, PET wastes from nonwoven fabrics production were extruded in presence of the secondary stabilizer Irgafos 126 (IRG) on variable concentrations. The results showed that Irgafos 126 increased molecular weight, decreased crystallinity and changed processing behavior of the PET, similarly to the effects produced by the well-known chain extender pyromellitic dianhydride (PMDA), showing that the secondary stabilizer Irgafos 126 can also act as a chain extender for the PET.
Resumo:
Triblock copolymers are made of monomer segments, being the central part usually hydrophobic and the outer parts hydrophilic. By varying sizes, molecular weights and monomer types of the segments one obtains different final molecules, with different physico-chemical properties, which are directly related to the performance of the final product. Looking for new products to be used, among other possibilities, in biological applications, a new polymer (Figure 1) was synthesized by the Dow Chemical and studied by Size Exclusion Chromatography, Fourier Transformed Infrared Spectrometry, Small-angle X-ray Scattering (SAXS) and its cloud point was determined by measuring light transmittance. The studies showed low molecular polydispersivety, but different polarities in the macromolecules fractions. Due to the low solubility of Diol in water, a mixture of water/butyl diglycol was used as solvent. An extensive analysis by SAXS was performed for concentrations from 50 wt% to 80 wt% of Diol in solution. Small concentrations showed very low signal to noise ratio, making it impossible to be analysed. The scattering intensity including the form factor of polydisperse non-homogeneous spheres, and the structure factor of interacting hard spheres was fitted to the curves. As the polymer concentration is high, the fitting of form factors of direct and reverse micelles were compared. The results for direct micelles were better up to 80 wt%, whereas at 90 wt% and 95 wt% the curves were better fitted by reverse micelles. It might seem odd that direct micelles are present up to such high concentrations, but it might have been caused by the presence of butyl diglycol, which increases the solubility of Diol in water. The inner and outer radius of the micelles, electron density distribution, and interaction radius of the micelles were obtained. The polydispersivety increases with Diol concentration. Besides, the interaction radius increases with solvent concentration, even when reversed micelles are present. In the last case, accompanied by an increase of inner radius (water content), as there are fewer Diol molecules to involve the water nuclei, which become larger, further apart, and in less number.
Resumo:
Der erste Teil der vorliegenden Dissertation beschäftigt sich mit der Eignung des ?,?-dithiolfunktionalisierten Poly(para-phenylenethinylen)s (PPE) als sogenannter âmolekularer Drahtâ für die molekulare Elektronik. Über die HECK-CASSAR-SONOGASHIRA-Reaktion wurden vollständig endfunktionalisierte, defektfreie Polymere mit durchschnittlichen Polymerisationsgraden von bis zu 45 Repetitionseinheiten synthetisiert. Die starke Aggregationsneigung der PPE, die die Anordnung der Polymerketten zwischen den Goldelektroden unterstützen soll, wurde mittels Rasterkraft- und Rastertunnelmikroskopie untersucht. Für die Untersuchungen zur Dotierbarkeit wurden ESR-, ENDOR-, UPS- und XPS-Messungen durchgeführt. Es konnte gezeigt werden, dass sich das PPE reduzieren lässt.Im zweiten Teil der Arbeit wurden die PPE zur Synthese von Stäbchen-Knäuel-Diblockcopolymeren eingesetzt. Die Darstellung erfolgte nach der 'grafting onto'-Methode, indem monocarboxyl-endfunktionalisiertes PPE mit flexiblen monohydroxyl-endfunktionalisiertem Polyethylenglykol, Polydimethylsulfoxid bzw. Polytetrahydrofuran verestert wurde. Den Nachweis der Diblockcopolymerbildung erbrachten die 1H?NMR-Spektroskopie und die für Diblockcopolymere noch wenig angewandte MALDI-TOF-Massenspektrometrie. Mittels Rasterkraftmikroskopie und Computersimulationen zur Molekularmechanik und -dynamik wurden die Aggregationseigenschaften der Diblockcopolymere untersucht.
Poly(lactide): from hyperbranched copolyesters to new block copolymers with functional methacrylates
Resumo:
The prologue of this thesis (Chapter 1.0) gives a general overview on lactone based poly(ester) chemistry with a focus on advanced synthetic strategies for ring-opening polymerization, including the emerging field of organo catalysis. This section is followed by a presentation of the state-of the art regarding the two central fields of the thesis: (i) polyfunctional and branched poly(ester)s in Chapter 1.1 as well as (ii) the development of new poly(ester) based block copolymers with functional methacrylates (Chapter 1.2). Chapter 2 deals with the synthesis of new, non-linear poly(ester) structures. In Chapter 2.1, the synthesis of poly(lactide)-based multiarm stars, prepared via a grafting-from method, is described. The hyperbranched poly(ether)-poly(ol) poly(glycerol) is employed as a hydrophilic core molecule. The resulting star block copolymers exhibit potential as phase transfer agents and can stabilize hydrophilic dyes in a hydrophobic environment. In Chapter 2.2, this approach is expanded to poly(glycolide) multiarm star polymers. The problem of the poor solubility of linear poly(glycolide)s in common organic solvents combined with an improvement of the thermal properties has been approached by the reduction of the total chain length. In Chapter 2.3, the first successful synthesis of hyperbranched poly(lactide)s is presented. The ring-opening, multibranching copolymerization of lactide with the “inimer” 5HDON (a hydroxyl-functional lactone monomer) was carefully examined. Besides a precise molecular characterization involving the determination of the degree of branching, we were able to put forward a reaction model for the formation of branching during polymerization. Several innovative approaches to amphiphilic poly(ester)/poly(methacrylate)-based block copolymers are presented in the third part of the thesis (Chapter 3). Block copolymer build-up especially relies on the combination of ring-opening and living radical polymerization. Atom transfer radical polymerization has been successfully combined with lactide ring-opening, using a “double headed” initiator. This strategy allowed for the realization of poly(lactide)-block-poly(2-hydroxyethyl methacrylate) copolymers, which represent promising materials for tissue engineering scaffolds with anti-fouling properties (Chapter 3.1). The two-step/one-pot approach forgoes the use of protecting groups for HEMA by a careful selection of the reaction conditions. A series of potentially biocompatible and partially biodegradable homo- and block copolymers is described in Chapter 3.2. In order to create a block copolymer with a comparably strong hydrophilic character, a new acetal-protected glycerol monomethacrylate monomer (cis-1,3- benzylidene glycerol methacrylate/BGMA) was designed. The hydrophobic poly(BGMA) could be readily transformed into the hydrophilic and water-soluble poly(iso-glycerol methacrylate) (PIGMA) by mild acidic hydrolysis. Block copolymers of PIGMA and poly(lactide) exhibited interesting spherical aggregates in aqueous environment which could be significantly influenced by variation of the poly(lactide)s stereo-structure. In Chapter 3.3, pH-sensitive poly(ethylene glycol)-b-PBGMA copolymers are described. At slightly acidic pH values (pH 4/37°C), they decompose due to a polarity change of the BGMA block caused by progressing acetal cleavage. This stimuli-responsive behavior renders the system highly attractive for the targeted delivery of anti-cancer drugs. In Chapter 3.4, which was realized in cooperation, the concept of biocompatible, amphiphilic poly(lactide) based polymer drug conjugates, was pursued. This was accomplished in the form of fluorescently labeled poly(HPMA)-b-poly(lactide) copolymers. Fluorescence correlation spectroscopy (FCS) of partially biodegradable block copolymer aggregates exhibited fast cellular uptake by human cervix adenocarcinoma cells without showing toxic effects in the examined concentration range (Chapter 4.1). The current state of further projects which will be pursued in future studies is addressed in Chapter 4. This covers the synthesis of biocompatible star block copolymers (Chapter 4.2) and the development of new methacrylate monomers for biomedical applications (Chapters 4.3 and 4.4). Finally, the further investigation of hydroxyl-functional lactones and carbonates which are promising candidates for the synthesis of new hydrophilic linear or hyperbranched biopolymers, is addressed in Chapter 4.5.
Resumo:
Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention.
Confined crystallization of nanolayered poly(ethylene terephthalate) using X-ray diffraction methods
Resumo:
The development of crystalline lamellae in ultra-thin layers of poly(ethylene terephthalate) PET confined between polycarbonate (PC) layers in an alternating assembly is investigated as a function of layer thickness by means of X-ray diffraction methods. Isothermal crystallization from the glassy state is in-situ followed by means of small-angle X-ray diffraction. It is found that the reduced size of the PET layers influences the lamellar nanostructure and induces a preferential lamellar orientation. Two lamellar populations, flat-on and edge-on, are found to coexist in a wide range of crystallization temperatures (Tc = 117–150 °C) and within layer thicknesses down to 35 nm. Flat-on lamellae appear at a reduced crystallization rate with respect to bulk PET giving rise to crystals of similar dimensions separated by larger amorphous regions. In addition, a narrower distribution of lamellar orientations develops when the layer thickness is reduced or the crystallization temperature is raised. In case of edge-on lamellae, crystallization conditions also influence the development of lamellar orientation; however, the latter is little affected by the reduced size of the layers. Results suggest that flat-on lamellae arise as a consequence of spatial confinement and edge-on lamellae could be generated due to the interactions with the PC interface. En este trabajo se investiga mediante difracción de rayos X a ángulos bajos (SAXS) y a ángulos altos (WAXS), la cristalización de láminas delgadas de Polietilén tereftalato (PET) confinadas entre láminas de Policarbonato (PC), tomando como referencia PET sin confinar. El espesor de las capas de PET varía entre 35nm y 115 nm. Se realizaron medidas de difracción a tres temperaturas de cristalización (117ºC, 132ºC y 150ºC) encontrándose que el reducido espesor de las capas de PET influye en la estructura lamelar que se desarrolla, induciendo una orientación preferente de las láminas. Se integró la intensidad difractada alrededor del máximo en SAXS para obtener una representación de la intensidad en función del ángulo acimutal. Mediante análisis de mínimos cuadrados se separó la curva experimental obtenida en tres contribuciones diferentes: una función Gausiana que describe la distribución de las orientaciones de las lamelas, una función lorenziana asociada a los máximos meridionales (asociados a las interfases PET-PC) y un background constante. Por otra parte la cantidad de material cristalizado se estimó asumiendo que la intensidad del background en el barrido acimutal, una vez restado el background del primer difractograma (sin máximos en SAXS) se asocia con la contribución del material isotrópico que resta en la muestra cristalizada. Se observa la coexistencia de dos poblaciones de lamelas: flat-on y edge-on. A medida que el espesor de las láminas de PET disminuye la población de las lamelas flat-on experimenta los siguientes cambios: 1) la distribución de orientación se estrecha, 2) la fracción de material cristalizado orientado aumenta, 3) la cinética de cristalización se ralentiza y 4) el largo espaciado aumenta es decir las regiones amorfas entre lamelas aumentan su tamaño. Parece demostrarse que es en las primeras etapas del crecimiento lamelar cuando la restricción espacial fuerza a las lamelas a esta orientación tipo flat-on frente a la orientación edge-on.
Resumo:
Poly(lactic acid) PLA, and poly(hydroxybutyrate) PHB, blends were processed as films and characterized for their use in food packaging. PLA was blended with PHB to enhance the crystallinity. Therefore, PHB addition strongly increased oxygen barrier while decreased the wettability. Two different environmentally-friendly plasticizers, poly(ethylene glycol) (PEG) and acetyl(tributyl citrate) (ATBC), were added to these blends to increase their processing performance, while improving their ductile properties. ATBC showed higher plasticizer efficiency than PEG directly related to the similarity solubility parameters between ATBC and both biopolymers. Moreover, ATBC was more efficiently retained to the polymer matrix during processing than PEG. PLA–PHB–ATBC blends were homogeneous and transparent blends that showed promising performance for the preparation of films by a ready industrial process technology for food packaging applications, showing slightly amber color, improved elongation at break, enhanced oxygen barrier and decreased wettability.
Resumo:
Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared and X-ray photoelectron spectroscopy and ICP-OES. It was observed that the synthesis of Pd nanoparticles employing ethylene glycol resulted in metallic palladium particles of smaller size compared to those prepared by the impregnation method and similar for both supports. The presence of oxygen groups on the support surface favored the activity and diminished the selectivity. It seems that ethylene glycol reacted with the surface groups of GO, this favoring the selectivity. The activity was higher over the CNT-based catalysts and both catalysts prepared by reduction in ethylene glycol were quite stable upon recycling.
Resumo:
Poly(hydroxyether of phenolphthalein) (PPH) was synthesized through the polycondensation of phenolphthalein with epichlorohydrin. It was characterized by Fourier transform infrared (FTIR) spectroscopy, NMR spectroscopy, and differential scanning calorimetry (DSC). The miscibility of the blends of PPH with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PPH/PEO blends prepared via casting from N,N-dimethylformamide possessed single, composition-dependent glass-transition temperatures. Therefore, the blends were miscible in the amorphous state for all compositions. FTIR studies indicated that there were competitive hydrogen-bonding interactions with the addition of PEO to the system, which were involved with (OHO)-O-. . .=C