860 resultados para poly(methylmethacrylate) amidation
Resumo:
The development of scaffolds that combine the delivery of drugs with the physical support provided by electrospun fibres holds great potential in the field of nerve regeneration. Here it is proposed the incorporation of ibuprofen, a well-known non-steroidal anti-inflammatory drug, in electrospun fibres of the statistical copolymer poly(trimethylene carbonate-co-ε-caprolactone) [P(TMC-CL)] to serve as a drug delivery system to enhance axonal regeneration in the context of a spinal cord lesion, by limiting the inflammatory response. P(TMC-CL) fibres were electrospun from mixtures of dichloromethane (DCM) and dimethylformamide (DMF). The solvent mixture applied influenced fibre morphology, as well as mean fibre diameter, which decreased as the DMF content in solution increased. Ibuprofen-loaded fibres were prepared from P(TMC-CL) solutions containing 5% ibuprofen (w/w of polymer). Increasing drug content to 10% led to jet instability, resulting in the formation of a less homogeneous fibrous mesh. Under the optimized conditions, drug-loading efficiency was above 80%. Confocal Raman mapping showed no preferential distribution of ibuprofen in P(TMC-CL) fibres. Under physiological conditions ibuprofen was released in 24h. The release process being diffusion-dependent for fibres prepared from DCM solutions, in contrast to fibres prepared from DCM-DMF mixtures where burst release occurred. The biological activity of the drug released was demonstrated using human-derived macrophages. The release of prostaglandin E2 to the cell culture medium was reduced when cells were incubated with ibuprofen-loaded P(TMC-CL) fibres, confirming the biological significance of the drug delivery strategy presented. Overall, this study constitutes an important contribution to the design of a P(TMC-CL)-based nerve conduit with anti-inflammatory properties.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Mestrado Integrado em Engenharia Química e Bioquímica
Resumo:
In this work, the mechanical behavior of polyhyroxyalkanoate (PHA)/poly(lactic acid) (PLA) blends is investigated in a wide range of compositions. The mechanical properties can be optimized by varying the PHA contents of the blend. The flexural and tensile properties were estimated by different models: the rule of mixtures, Kerner–Uemura–Takayanagi (KUT) model, Nicolai–Narkis model and Béla–Pukánsky model. This study was aimed at investigating the adhesion between the two material phases. The results anticipate a good adhesion between both phases. Nevertheless, for low levels of incorporation of PHA (up to 30%), where PLA is expectantly the matrix, the experimental data seem to deviate from the perfect adhesion models, suggesting a decrease in the adhesion between both polymeric phases when PHA is the disperse phase. For the tensile modulus, a linear relationship is found, following the rules of mixtures (or a KUT model with perfect adhesion between phases) denoting a good adhesion between the phases over the composition range. The incorporation of PHA in the blend leads to a decrease in the flexural modulus but, at the same time, increases the tensile modulus. The impact energy of the blends varies more than 157% over the entire composition. For blends with PHA weight fraction lower than 50%, the impact strength of the blend is higher than the pure base polymers. The highest synergetic effect is found when the PLA is the matrix and the PHA is the disperse phase for the blend PHA/PLA of 30/70. The second maximum is found for the inverse composition of 70/30. PLA has a heat-deflection temperature (HDT) substantially lower than PHA. For the blends, the HDT increases with the increment in the percentage of the incorporation of PHA. With up to 50% PHA (PLA as matrix), the HDT is practically constant and equal to PLA value. Above this point (PHA matrix), the HDT of the polymer blends increases linearly with the percentage of addition of PHA.
Resumo:
Supramolecular chirality was achieved in solutions and thin films of a calixarene-containing chiral aryleneethynylene copolymer. The observed chiroptical activity, which is primarily allied with the formation of aggregates of high molecular weight polymer chains, is the result of a combination of intrachain and interchain effects. The former arises by the adoption of an induced helix-sense by the polymer main-chain while the latter comes from the exciton coupling of aromatic backbone transitions. The co-existence of bulky bis-calixKlarene units and chiral side-chains on the polymer skeleton prevents efficient pi-stacking of neighbouring chains, keeping the chiral assembly highly emissive. In contrast, for a model polymer lacking calixarene moieties, the chiroptical activity is dominated by strong interchain exciton couplings as a result of more favourable packing of polymer chains, leading to a marked decrease of photoluminescence in the aggregate state. The enantiomeric recognition abilities of both polymers towards (R)- and (S)-alpha-methylbenzylamine were examined. It was found that a significant enantiodiscrimination is exhibited by the calixarene-based polymer in the aggregate state.
Resumo:
This study is primarily focused in establishing the solid-state sensory abilities of several luminescent polymeric calix[4]arene-based materials toward selected nitroaromatic compounds (NACs), creating the foundations for their future application as high performance materials for detection of high explosives. The phenylene ethynylene-type polymers possessing bis-calix[4]arene scaffolds in their core were designed to take advantage of the known recognition abilities of calixarene compounds toward neutral guests, particularly in solid-state, therefore providing enhanced sensitivity and selectivity in the sensing of a given analyte. It was found that all the calix[4]arene-poly(para-phenylene ethynylene)s here reported displayed high sensitivities toward the detection of nitrobenzene, 2,4-dinitrotoluene and 2,4,6-trinitrotoluene (TNT). Particularly effective and significant was the response of the films (25-60 nm of thickness) upon exposure to TNT vapor (10 ppb): over 50% of fluorescence quenching was achieved in only 10 s. In contrast, a model polymer lacking the calixarene units showed only reduced quenching activity for the same set of analytes, clearly highlighting the relevance of the macrocyclics in promoting the signaling of the transduction event. The films exhibited high photostability (less than 0.5% loss of fluorescence intensity up to 15 min of continuous irradiation) and the fluorescence quenching sensitivity could be fully recovered after exposure of the quenched films to saturated vapors of hydrazine (the initial fluorescence intensities were usually recovered within 2-5 min of exposure to hydrazine).
Exploring the bioavailability of (poly)phenols from berries and their potential activities in humans
Resumo:
(Poly)phenols are the most widely distributed secondary metabolites, in plants, and, therefore, are regular constituents of human food products. The regular ingestion of (poly)phenol-containing foods has been associated with a reduced risk of acquiring chronic diseases and many studies are currently trying to corroborate this theory. However, the precise contribution of (poly)phenols to disease prevention is still unknown.(...)
Resumo:
Staphylococcus aureus is one of the most important contemporary human pathogens. The evolutionary “success” of this species is closely related to its remarkably capacity to acquire antibiotic resistance traits. In this perspective, it is important to extend our knowledge concerning the mechanisms of antibiotic resistance in S. aureus and to identify new antimicrobials targets.(...)
Resumo:
Part of the work described in this chapter, was the subject of the following publication: D. Vieira, T. a. Figueiredo, A. Verma, R. G. Sobral, A. M. Ludovice, H. de Lencastre, and J. Trincao, “Purification, crystallization and preliminary X-ray diffraction analysis of GatD, a glutamine amidotransferase-like protein from Staphylococcus aureus peptidoglycan,” Acta Crystallogr. Sect. F Struct. Biol. Commun., vol. 70, no. 5, pp. 1–4, Apr. 2014.
Resumo:
Staphylococcus epidermidis is a biofilm - forming bacterium and a leading etiological agent of nosocomial infections. The ability to establish biofilms on indwelling medical devices is a key virulence factor for this bacterium. Still, the influence of poly - N - acetyl glucosamine (PNAG), the major component of the extracellular biofilm matrix, in the host immune response has been scarcely studied. Here, t h is influence was assessed in mice challenged i.p. with PNAG - p roducing (WT) and isogenic - mutant lacking PNAG (M10) bacteria grown in biofilm - inducing conditions. Faster bacterial clearance was observed in the mice infected with WT bacteria than in M10 - infected counterparts , which w as accompanied by earlier neutrophil recruitment and higher IL - 6 production. Interestingly, in the WT - infected mice, but not in those infected with M10 , elevated serum IL - 10 was detected . To further study the effe ct of PNAG in the immune response, mice were primed with WT or M10 biofilm bacteria and subsequently infected with WT biofilm - released cells. WT - primed mice presented a higher frequency of splenic IFN - γ + and IL - 17 + CD4 + T cells, and more severe liver patho logy than M10 - primed counterparts. Nevertheless, T reg cells obtained from the WT - primed mice presented a higher suppressive function than those obtained from M10 - primed mice. This effect was abrogated when IL - 10 - deficient mice were similarly primed and infected indicating that PNAG promotes the differentiati on of highly suppressive T reg cells by a mechanism dependent on IL - 10. Altogether, these results provide evidence help ing explain ing the coexistence of inflammation and bacterial persistence often observed in biofilm - originated S. epidermidis infections
Resumo:
In this work we present the thermal characterization of the full scope of polyhydroxyalcanoate and poly(lactic acid) blends obtain by injection molding. Blends of polyhydroxyalcanoate and poly(lactic acid) (PHA/PLA) were prepared in different compositions ranging from 0–100% in steps of 10%. The blends were injection molded and then characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The increment of PHA fraction increased the degree of crystallinity of the blend and the miscibility of the base polymers as verified by the Fox model. The WAXD analysis indicates that the presence of PHA hindered the PLA crystallization. The crystallization evolution trough PHA weight fraction (wf) shows a phase inversion around 50-60%. SEM analyses confirmed that the miscibility of PHA/PLA blends increased with the incorporation of PHA and became total for values of PHA higher that 50%.
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) – P(VDF-CTFE) membranes are increasingly interesting for a wide range of applications, including battery separators, filtration membranes and biomedical applications. This work reports on the morphology, hydrophobicity, thermal and mechanical properties variation of P(VDF-CTFE) membranes processed by nonsolvent induced phase separation technique (NIPS) as a function of the main processing parameters. All membranes show a porous structure composed of large spherulites, (interconnected) micropores and/or microvoids depending on the processing conditions used that in turn affect their hydrophobicity and mechanical properties. The degree of crystallinity of the membranes remains approximately constant with a value of about 15 %, except for the membranes immediately immersed in ethanol, which is of about 23 %. In turn, the crystalline phases present in the copolymer is mainly affected by the temperature and nonsolvent characteristics of the coagulation bath, the β-phase content ranging from 33 to 100 %, depending on those processing parameters. It was show that the temperature of water-based coagulation bath plays an important role in order to produce structurally uniform and homogeneous porous membranes, which is particularly important from the point of view of technological applications.
Resumo:
Due to the increasing need of low voltage actuators, independent from electrochemical processes, electroactive actuators based on poly(vinylidene fluoride) composites with 10, 25 and 40 % of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim] [NTf2], ionic liquid are prepared by solvent casting and melting. We show that the charge structure of [C2mim] [NTf2] induces the complete piezoelectric -phase crystallization of the PVDF within the composite and decreases its crystallinity fraction significantly. [C2mim] [NTf2] also works as a plasticizer of PVDF, reducing the elastic modulus down to 12 % of the initial value. Moreover, the composites show significant displacement and bending under applied voltages of 2, 5 and 10 Vpp. The displacement and bending of the composite membranes are also evaluated as a function of [C2mim] [NTf2] content and sample thickness. Increasing amounts of ionic liquid result in larger deformations independently of the applied voltage.
Resumo:
Polymer based scintillator composites have been fabricated by combining poly(vinylidene fluoride) (PVDF) and Gd2O3:Eu nanoparticles (50nm). PVDF has been used since it is a flexible and stable binder matrix and highly resistance to thermal and light deterioration. Gd2O3:Eu has been selected as scintillator material due to its wide band gap, high density and suitable visible light yield. The structural, mechanical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. The introduction of Gd2O3:Eu nanoparticles into the PVDF matrix does not influence the morphology of the polymer or the degree of crystallinity. On the other hand, an increase of the Young´s modulus with respect to PVDF matrix is observed for filler contents of 0.1-0.75 wt.%. The introduction of Gd2O3:Eu into the PVDF matrix increases dielectric constant and DC electrical conductivity as well as the visible light yield in the nanocomposite, being this increase dependent upon Gd2O3:Eu content and X-ray input power. In this way, Gd2O3:Eu/PVDF composites shows suitable characteristics to be used as X-ray radiation transducers, in particular for large area applications.
Resumo:
Separator membranes based on poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) were prepared by solvent casting technique based on its phase diagram in N,Ndimethylformamide (DMF) solvent. The microstructure of the PVDF-CTFE separator membranes depends on the initial position (temperature and concentration) of the solution in the phase diagram of the PVDF-CTFE/DMF system. A porous microstructure is achieved for PVDF-CTFE membranes with solvent evaporation temperature up to 50 ºC for a polymer/solvent relative concentration of 20 wt%. The ionic conductivity of the separator depends on the degree of porosity and electrolyte uptake, the highest room temperature value being 1.5 mS.cm-1 for the sample with 20 wt% of polymer concentration and solvent evaporation temperature at 25 ºC saturated with 1 mol L-1 lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) in propylene carbonate (PC). This PVDF-CTFE separator membrane in Li/C-LiFePO4 half-cell shows good cyclability and rate capability, showing a discharge value after 50 cycles of 92 mAh.g-1 at 2 C, which is still 55% of the theoretical value. PVDF-CTFE separators are thus excellent candidates for high-power and safety lithium-ion batteries applications.