934 resultados para plant functional type
Resumo:
To determine the role lemmings play in structuring plant communities and their contribution to the 'greening of the Arctic', we measured plant cover and biomass in 50 + year old lemming exclosures and control plots in the coastal tundra near Barrow, Alaska. The response of plant functional types to herbivore exclusion varied among land cover types. In general, the abundance of lichens and bryophytes increased with the exclusion of lemmings, whereas graminoids decreased, although the magnitude of these responses varied among land cover types. These results suggest that sustained lemming activity promotes a higher biomass of vascular plant functional types than would be expected without their presence and highlights the importance of considering herbivory when interpreting patterns of greening in the Arctic. In light of the rapid environmental change ongoing in the Arctic and the potential regional to global implications of this change, further exploration regarding the long-term influence of arvicoline rodents on ecosystem function (e.g. carbon and energy balance) should be considered a research priority.
Resumo:
El presente trabajo es un estudio teórico – experimental para la implementación de un edificio metálico de cuatro plantas con dispositivos disipadores de energía. Este estudio presenta una técnica para la generación de un registro sísmico artificial, que sea compatible con los espectros de diseño de las normas chilena y española. Este acelerograma se crea con una herramienta computacional denominada SIMQKE. La simulación de la estructura sometida al terremoto artificial se realizará en el programa de elementos finitos SAP200. El trabajo se encuentra dividido en cuatro capítulos, cuyos contenidos son los siguientes. En el capitulo uno, o estado del arte, se revisan las diferentes técnicas de aislamiento sísmico, se describe el dispositivo a utilizar, sus bases teóricas y formulación matemática, se revisan las normas NCh.2745 Of.2003 [12], NCSE-02 [18] y se presenta la técnica para la generación de un registro sintético compatible. El capítulo dos aborda el análisis experimental para un edificio real: una edificación de estructura metálica implementada con disipadores de energía metálicos y que será sometida a tres terremotos de diferente magnitud. El capítulo tres expone los resultados de los desplazamientos medidos para la estructura sin disipadores y con ellos, se presentan los porcentajes de disminución de desplazamientos relativos por planta y por tipo de estructura. Por último, el capítulo cuatro presenta las principales conclusiones y una breve discusión de los resultados. The present work is a theoretical and experimental study for the implementation of a fourstorey building with energy dissipating devices. This study presents a technique for generation an artificial seismic record, which is compatible with the design spectra Chilean and Spanish standards. This accelerogram is created with a computational tool called SIMQKE. The simulation of the structure subjected to artificial earthquake will take place in the finite element program SAP2000. This work is divided into four chapters whose contents are as follows. In chapter one, or state of the art, reviews the different seismic isolation techniques, describes the device used, theoretical and mathematical formulation, NCh2745 Of.2003 [12] and NCSE-02 [18] standards are checked, and presents the technique for generating a synthetic record compatible. Chapter two explains the experimental analysis to a real building: a building of steel structure implemented with metallic energy dissipators and will be submitted to three different earthquakes of magnitude. Chapter three presents the results of measured displacements for the structure without dissipators and with them, the percentages of decline relative displacements per plant and type of structure. Finally, chapter four presents the main conclusions and a brief discussion of the results.
Resumo:
En la actualidad, el seguimiento de la dinámica de los procesos medio ambientales está considerado como un punto de gran interés en el campo medioambiental. La cobertura espacio temporal de los datos de teledetección proporciona información continua con una alta frecuencia temporal, permitiendo el análisis de la evolución de los ecosistemas desde diferentes escalas espacio-temporales. Aunque el valor de la teledetección ha sido ampliamente probado, en la actualidad solo existe un número reducido de metodologías que permiten su análisis de una forma cuantitativa. En la presente tesis se propone un esquema de trabajo para explotar las series temporales de datos de teledetección, basado en la combinación del análisis estadístico de series de tiempo y la fenometría. El objetivo principal es demostrar el uso de las series temporales de datos de teledetección para analizar la dinámica de variables medio ambientales de una forma cuantitativa. Los objetivos específicos son: (1) evaluar dichas variables medio ambientales y (2) desarrollar modelos empíricos para predecir su comportamiento futuro. Estos objetivos se materializan en cuatro aplicaciones cuyos objetivos específicos son: (1) evaluar y cartografiar estados fenológicos del cultivo del algodón mediante análisis espectral y fenometría, (2) evaluar y modelizar la estacionalidad de incendios forestales en dos regiones bioclimáticas mediante modelos dinámicos, (3) predecir el riesgo de incendios forestales a nivel pixel utilizando modelos dinámicos y (4) evaluar el funcionamiento de la vegetación en base a la autocorrelación temporal y la fenometría. Los resultados de esta tesis muestran la utilidad del ajuste de funciones para modelizar los índices espectrales AS1 y AS2. Los parámetros fenológicos derivados del ajuste de funciones permiten la identificación de distintos estados fenológicos del cultivo del algodón. El análisis espectral ha demostrado, de una forma cuantitativa, la presencia de un ciclo en el índice AS2 y de dos ciclos en el AS1 así como el comportamiento unimodal y bimodal de la estacionalidad de incendios en las regiones mediterránea y templada respectivamente. Modelos autorregresivos han sido utilizados para caracterizar la dinámica de la estacionalidad de incendios y para predecir de una forma muy precisa el riesgo de incendios forestales a nivel pixel. Ha sido demostrada la utilidad de la autocorrelación temporal para definir y caracterizar el funcionamiento de la vegetación a nivel pixel. Finalmente el concepto “Optical Functional Type” ha sido definido, donde se propone que los pixeles deberían ser considerados como unidades temporales y analizados en función de su dinámica temporal. ix SUMMARY A good understanding of land surface processes is considered as a key subject in environmental sciences. The spatial-temporal coverage of remote sensing data provides continuous observations with a high temporal frequency allowing the assessment of ecosystem evolution at different temporal and spatial scales. Although the value of remote sensing time series has been firmly proved, only few time series methods have been developed for analyzing this data in a quantitative and continuous manner. In the present dissertation a working framework to exploit Remote Sensing time series is proposed based on the combination of Time Series Analysis and phenometric approach. The main goal is to demonstrate the use of remote sensing time series to analyze quantitatively environmental variable dynamics. The specific objectives are (1) to assess environmental variables based on remote sensing time series and (2) to develop empirical models to forecast environmental variables. These objectives have been achieved in four applications which specific objectives are (1) assessing and mapping cotton crop phenological stages using spectral and phenometric analyses, (2) assessing and modeling fire seasonality in two different ecoregions by dynamic models, (3) forecasting forest fire risk on a pixel basis by dynamic models, and (4) assessing vegetation functioning based on temporal autocorrelation and phenometric analysis. The results of this dissertation show the usefulness of function fitting procedures to model AS1 and AS2. Phenometrics derived from function fitting procedure makes it possible to identify cotton crop phenological stages. Spectral analysis has demonstrated quantitatively the presence of one cycle in AS2 and two in AS1 and the unimodal and bimodal behaviour of fire seasonality in the Mediterranean and temperate ecoregions respectively. Autoregressive models has been used to characterize the dynamics of fire seasonality in two ecoregions and to forecasts accurately fire risk on a pixel basis. The usefulness of temporal autocorrelation to define and characterized land surface functioning has been demonstrated. And finally the “Optical Functional Types” concept has been proposed, in this approach pixels could be as temporal unities based on its temporal dynamics or functioning.
Resumo:
El punto de partida para que una empresa mejore su competitividad es la evaluación de su gestión; para ello, es necesario contar con instrumentos que de manera objetiva, evalúen la gestión y proporcionen una guía para la mejora continua de los procesos. Este trabajo de investigación presenta el diseño y aplicación de un instrumento para evaluar la gestión de recursos humanos en las pymes industriales. Es un instrumento adaptado a la cultura, mercado, características y especificidades propias de las pymes del sector industrial del Estado Bolívar, Venezuela. Los items de evaluación fueron divididos en cuatro bloques de acuerdo al ciclo Planificar, Hacer, Verificar, Actuar y su validación estadística fue realizada mediante la técnica de análisis multivariante. Una vez validada, se aplicó la herramienta a trescientos setenta y cinco individuos del área de Recursos Humanos en ciento veinticinco Pymes industriales. Los resultados indican que los aspectos de tipo funcional son los que conducen la gestión en lugar de las razones estratégicas de la empresa, y en general, no existe plan de carrera ni sistema de evaluación de desempeño. La caracterización aportada por este estudio permite a las empresas evaluadas conocer cuales son los factores a mejorar en su gestión.The starting point for a company to improve its competitiveness is the evaluation of their management; for this it is necessary to have instruments that objectively evaluate and provide management guidance for continuous process improvement. This research paper presents the design and implementation of a tool to assess the human resource management in industrial SMEs. It is an instrument adapted to the culture, market characteristics and needs of SMEs in the Bolivar State, Venezuela. The evaluation items were divided into four blocks according to the Plan, Do, Check, Act cycle and its statistical validation was performed using the technique of multivariate analysis. Once validated, the tool was applied to hundred seventy five individuals of Human Resources belonging to hundred twenty five industrial SMEs. The results indicate that aspects of functional type are the leading management rather than strategic reasons, and in general, there is no career plan and system performance evaluation. The characterization provided by this study evaluated allows companies to know what factors to improve their management.
Resumo:
Type II restriction and modification (R-M) genes have been described as selfish because they have been shown to impose selection for the maintenance of the plasmid that encodes them. In our experiments, the type I R-M system EcoKI does not behave in the same way. The genes specifying EcoKI are, however, normally residents of the chromosome and therefore our analyses were extended to monitor the deletion of chromosomal genes rather than loss of plasmid vector. If EcoKI were to behave in the same way as the plasmid-encoded type II R-M systems, the loss of the relevant chromosomal genes by mutation or recombination should lead to cell death because the cell would become deficient in modification enzyme and the bacterial chromosome would be vulnerable to the restriction endonuclease. Our data contradict this prediction; they reveal that functional type I R-M genes in the chromosome are readily replaced by mutant alleles and by alleles encoding a type I R-M system of different specificity. The acquisition of allelic genes conferring a new sequence specificity, but not the loss of the resident genes, is dependent on the product of an unlinked gene, one predicted [Prakash-Cheng, A., Chung, S. S. & Ryu, J. (1993) Mol. Gen. Genet. 241, 491–496] to be relevant to control of expression of the genes that encode EcoKI. Our evidence suggests that not all R-M systems are evolving as “selfish” units; rather, the diversity and distribution of the family of type I enzymes we have investigated require an alternative selective pressure.
Resumo:
Sustained (noninactivating) outward-rectifying K+ channel currents have been identified in a variety of plant cell types and species. Here, in Arabidopsis thaliana guard cells, in addition to these sustained K+ currents, an inactivating outward-rectifying K+ current was characterized (plant A-type current: IAP). IAP activated rapidly with a time constant of 165 ms and inactivated slowly with a time constant of 7.2 sec at +40 mV. IAP was enhanced by increasing the duration (from 0 to 20 sec) and degree (from +20 to −100 mV) of prepulse hyperpolarization. Ionic substitution and relaxation (tail) current recordings showed that outward IAP was mainly carried by K+ ions. In contrast to the sustained outward-rectifying K+ currents, cytosolic alkaline pH was found to inhibit IAP and extracellular K+ was required for IAP activity. Furthermore, increasing cytosolic free Ca2+ in the physiological range strongly inhibited IAP activity with a half inhibitory concentration of ≈ 94 nM. We present a detailed characterization of an inactivating K+ current in a higher plant cell. Regulation of IAP by diverse factors including membrane potential, cytosolic Ca2+ and pH, and extracellular K+ and Ca2+ implies that the inactivating IAP described here may have important functions during transient depolarizations found in guard cells, and in integrated signal transduction processes during stomatal movements.
Resumo:
The commitment of eukaryotic cells to division normally occurs during the G1 phase of the cell cycle. In mammals D-type cyclins regulate the progression of cells through G1 and therefore are important for both proliferative and developmental controls. Plant CycDs (D-type cyclin homologs) have been identified, but their precise function during the plant cell cycle is unknown. We have isolated three tobacco (Nicotiana tabacum) CycD cyclin cDNAs: two belong to the CycD3 class (Nicta;CycD3;1 and Nicta;CycD3;2) and the third to the CycD2 class (Nicta;CycD2;1). To uncouple their cell-cycle regulation from developmental control, we have used the highly synchronizable tobacco cultivar Bright Yellow-2 in a cell-suspension culture to characterize changes in CycD transcript levels during the cell cycle. In cells re-entering the cell cycle from stationary phase, CycD3;2 was induced in G1 but subsequently remained at a constant level in synchronous cells. This expression pattern is consistent with a role for CycD3;2, similar to mammalian D-type cyclins. In contrast, CycD2;1 and CycD3;1 transcripts accumulated during mitosis in synchronous cells, a pattern of expression not normally associated with D-type cyclins. This could suggest a novel role for plant D-type cyclins during mitosis.
Resumo:
Jellyfishes have functionally replaced several overexploited commercial stocks of planktivorous fishes. This is paradoxical, because they use a primitive prey capture mechanism requiring direct contact with the prey, whereas fishes use more efficient visual detection. We have compiled published data to show that, in spite of their primitive life-style, jellyfishes exhibit similar instantaneous prey clearance and respiration rates as their fish competitors and similar potential for growth and reproduction. To achieve this production, they have evolved large, water-laden bodies that increase prey contact rates. Although larger bodies are less efficient for swimming, optimization analysis reveals that large collectors are advantageous if they move through the water sufficiently slowly.
Resumo:
Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south-east Queensland. In these communities, small-scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2, changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2, total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3, fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.
Resumo:
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen. Several antibiotic resistant strains of P. aeruginosa are commonly found as secondary infection in immune-compromised patients leaving significant mortality and healthcare cost. Pseudomonas aeruginosa successfully avoids the process of phagocytosis, the first line of host defense, by secreting several toxic effectors. Effectors produced from P. aeruginosa Type III secretion system are critical molecules required to disrupt mammalian cell signaling and holds particular interest to the scientists studying host-pathogen interaction. Exoenzyme S (ExoS) is a bi-functional Type III effector that ADP-ribosylates several intracellular Ras (Rat sarcoma) and Rab (Response to abscisic acid) small GTPases in targeted host cells. The Rab5 protein acts as a rate limiting protein during phagocytosis by switching from a GDP- bound inactive form to a GTP-bound active form. Activation and inactivation of Rab5 protein is regulated by several Rab5-GAPs (GTPase Activating Proteins) and Rab5-GEFs (Rab5-Guanine nucleotide Exchange Factors). Some pathogenic bacteria have shown affinity for Rab proteins during infection and make their way inside the cell. This dissertation demonstrated that Rab5 plays a critical role during early steps of P. aeruginosa invasion in J774-Eclone macrophages. It was found that live, but not heat inactivated, P. aeruginosa inhibited phagocytosis that occurred in conjunction with down-regulation of Rab5 activity. Inactivation of Rab5 was dependent on ExoS ADP-ribosyltransferase activity, and more than one arginine sites in Rab5 are possible targets for ADP-ribosylation modification. However, the expression of Rin1, but not other Rab5GEFs (Rabex-5 and Rap6) reversed this down-regulation of Rab5 in vivo. Further studies revealed that the C-terminus of Rin1 carrying Rin1:Vps9 and Rin1:RA domains are required for optimal Rab5 activation in conjunction with active Ras. These observations demonstrate a novel mechanism of Rab5 targeting to phagosome via Rin1 during the phagocytosis of P. aeruginosa. The second part of this dissertation investigated antimicrobial activities of Dehydroleucodine (DhL), a secondary metabolite from Artemisia douglasiana, against P. aeruginosa growth and virulence. Populations of several P. aeruginosa strains were completely susceptible to DhL at a concentration between 0.48~0.96 mg/ml and treatment at a threshold concentration (0.12 mg/ml) inhibited growth and many virulent activities without damaging the integrity of the cell suggesting anti-Pseudomonas activity of DhL.
Resumo:
The study was carried out on the main plots of a large grassland biodiversity experiment (the Jena Experiment). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. We tracked soil microbial basal respiration (BR; µlO2/g dry soil/h) and biomass carbon (Cmic; µgC/g dry soil) over a time period of 12 years (2003-2014) and examined the role of plant diversity and plant functional group composition for the spatial and temporal stability (calculated as mean/SD) of soil microbial properties (basal respiration and biomass) in bulk-soil. Our results highlight the importance of plant functional group composition for the spatial and temporal stability of soil microbial properties, and hence for microbially-driven ecosystem processes, such as decomposition and element cycling, in temperate semi-natural grassland.
Resumo:
This data sets contains LPJ-LMfire dynamic global vegetation model output covering Europe and the Mediterranean for the Last Glacial Maximum (LGM; 21 ka) and for a preindustrial control simulation (20th century detrended climate). The netCDF data files are time averages of the final 30 years of the model simulation. Each netCDF file contains four or five variables: fractional cover of 9 plant functional types (PFTs; cover), total fractional coverage of trees (treecover), population density of hunter-gatherers (foragerPD; only for the "people" simulations), fraction of the gridcell burned on 30-year average (burnedf), and vegetation net primary productivity (NPP). The model spatial resolution is 0.5-degrees For the LGM simulations, LPJ-LMfire was driven by the PMIP3 suite of eight GCMs for which LGM climate simulations were available. Also provided in this archive is the result of an LPJ-LMfire run that was forced by the average climate of all GCMs (the "GCM-mean" files), and the average of each of the individual LPJ-LMfire runs over the eight LGM scenarios individually (the "LPJ-mean" files). The model simulations are provided that include the influence of human presence on the landscape (the "people" files), and in a "world without humans" scenario (the "natural" files). Finally this archive contains the preindustrial reference simulation with and without human influence ("PI_reference_people" and "PI_reference_nat", respectively). There are therefore 22 netCDF files in this archive: 8 each of LGM simulations with and without people (total 16) and the "GCM mean" simulation (2 files) and the "LPJ mean" aggregate (2 files), and finally the two preindustrial "control" simulations ("PI"), with and without humans (2 files). In addition to the LPJ-LMfire model output (netCDF files), this archive also contains a table of arboreal pollen percent calculated from pollen samples dated to the LGM at sites throughout (lgmAP.txt), and a table containing the location of archaeological sites dated to the LGM (LGM_archaeological_site_locations.txt).
Resumo:
Boreal peatlands contain approximately one third of the global soil carbon and are considered net sinks of atmospheric CO2. Water level position is one of the main regulators of CO2 fluxes in northern peatlands because it controls both the thickness of the aerobic layer in peat and plant communities. However, little is known about the role of different plant functional groups and their possible interaction with changing water level in boreal peatlands with regard to CO2 cycling. Climate change may also accelerate changes in hydrological conditions, changing both aerobic conditions and plant communities. To help answer these questions, this study was conducted at a mesocosm facility in Northern Michigan where the aim was to experimentally study the effects of water levels, plant functional groups (sedges, shrubs and mosses) and the possible interaction of these on the CO2 cycle of a boreal peatland ecosystem. The results indicate that Ericaceous shrubs are important in the boreal peatland CO2 cycle. The removal of these plants decreased ecosystem respiration, gross ecosystem production and net ecosystem exchange rates, whereas removing sedges did not show any significant differences in the flux rates. The water level did not significantly affect the flux rates. The amount of aboveground sedge biomass was higher in the low water level sedge treatment plots compared to the high water level sedge plots, possibly because the lowered water level and the removal of Ericaceae released nutrients for sedges to use up.
Resumo:
Andean montane forests are one of the most diverse ecosystems on Earth, but are also highly vulnerable to climate change. Therefore, the link between plant distribution and ecosystem productivity is a critical point to investigate in these ecosystems. Are the patterns in productivity observed in montane forest due to species turnover along the elevational gradients? Methodological constraints keep this question unanswered. Also, despite their importance, belowground biomass remains poorly quantified and understood. I measured two plant functional traits in seedlings, root:shoot ratio and specific leaf area, to identify different strategies in growth and biomass allocation across elevations. A tradeoff in specific leaf area with elevation was found in only one species, and no generalized directional change was detected with elevations for root:shoot ratio. Lack of information for the ontogeny of the measured plant traits could confounding the analysis.