926 resultados para photocatalytic oxidation process


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an attempt to ascertain the rate-determining steps (RDS) of TiO2 photoelectrocatalytic (PEC) reaction, the PEC oxidation of sulfosalicylic acid (SSA) solution in a TiO2-coated electrode reactor system was monitored by applying the electrochemical impedance spectroscopy (EIS) method. In the meantime, an EIS mathematical model was first established to theoretically simulate the PEC reaction. Based on the EIS model, the theoretical simulation indicates three typical reactions in a PEC oxidation process, which include the charge-transfer-dominated reaction, both the charge-transfer- and adsorption-dominated reaction, and the adsorption-dominated reaction. The experimental results of EIS measurement showed that there was only one arc/semicircle on the EIS plane display when the external bias applied was below 200 mV (vs SCE) in the SSA PEC degradation whereas there were two arcs/semicircles when the externally applied bias exceeded 200 mV (vs SCE). The experimental results have a good agreement with the model simulation. The EIS method in this study provides an easier way to determine the RDS in a PEC oxidation process, which would be helpful to better control the reaction in practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrolyte, NaBF4, can be enriched into the matrix of poly(3,4-ethylenedioxythiophene) (PEDOT) film during the p-doping potential cycling between 0.6 and -0.9 V. It has been demonstrated that this enrichment is originated from the mixed ion transfer between doping and dedoping, i.e. BF4- anion migrate into the PEDOT film during the oxidation process, the Ne cation insert into the film during the reduction process, and then, the electrolyte is accumulated into the film matrix after the multiple CV cycling. The quantitative analysis of energy-dispersive X-ray spectroscopy (EDX) confirmed the enrichment of NaBF4 in the PEDOT film.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An effective and facile in Situ reduction approach for the fabrication of carbon nanotube-supported Au nanoparticle (CNT/Au NP) composite nanomaterials is demonstrated in this article. Linear polyethyleneimine (PEI) is ingeniously used as both a functionalizing agent for the multiwalled carbon nanotubes (MWNTs) and a reducing agent for the formation of An NPs. This method involves a simple mixing process followed by a mild heating process. This approach does not need the exhaustive surface oxidation process of CNTs. The coverage of Au NPs on CNTs is tunable by varying the experimental parameters, such as the initial molar ratio of PEI to HAuCl4, the relative concentration of PEI and HAUCl(4) to MWNTs, and the temperature and duration of the heat treatment. More importantly, even the heterogeneous CNT/Au composite nanowires are obtainable through this method. TEM, XPS, and XRD are all used to characterize the CNT/Au composite materials. In addition, the optical and electrocatalytic properties are investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phenyl-capped trianiline and tetraaniline in the leucoemeraldine oxidation state were synthesized through a modified-pseudo-high-dilution technique. The chemical oxidation process of these compounds were studied by UV-Vis spectra. It was found that phenyl-capped trianiline in the leucoemeraldine oxidation state was oxidized to its EB form and then decomposed, Phenyl-capped tetraaniline was oxidized to its EB form and then to the pernigraniline oxidation state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel method is employed for the simultaneous determination of both the calibration constant of an electrochemical quartz crystal microbalance (EQCM) and the active surface area of a polycrystalline gold electrode. A gold electrode: is immersed into a 1 mM KI/1 M H2SO4 solution and on which forms a neutral monolayer. The adsorbed iodine can then be completely oxidized into IO3-. The active surface area of a gold electrode can be obtained from the net electrolytic charge of the oxidation process, and the calibration constant in the EQCM can be calculated from the corresponding frequency shift. The result shows that this method is simple, convenient and valid. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conformational transition of disulfides in bovine serum albumin (BSA) induced by electrochemical redox reaction of disulfides were monitored by in-situ circular dichroism (CD) spectroelectrochemistry, with a long optical path thin layer cell and analyzed by a singular value decomposition least square (SVDLS) method. Electrochemical reduction of disulfides drives the left-handed conformation of disulfides changed into the right-handed. At open circuit, eight of the 17 disulfides were of left-handed conformation. Four of the 17 disulfides took part in the electrochemical reduction with an EC mechanism. Only one-fourth of the reduced disulfides returned to left-handed conformation in the re-oxidation process. Some parameters of the electrochemical reduction process, i.e. the number of electrons transferred and electron transfer coefficient, n=8, alphan=0.15, apparent formal potential, E-1(0') = -0.65(+/-0.01) V, standard heterogeneous electron transfer rate constant, k(1)(0) = (2.84 +/- 0.14)x 10(-5) cm s(-1) and chemical reaction equilibrium constant, K-c=(5.13 +/- 0.12) x 10(-2), were also obtained by double logarithmic analysis based on the near-UV absorption spectra with applied potentials. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrochemical redox behavior of noradrenaline in alkaline solution on a glassy carbon electrode has been investigated by in situ UV-vis and CD spectroelectrochemistry by using a long optical path thin-layer cell. The experimental data were processed by using a double logarithmic method of analysis together with nonlinear regression which confirmed that the first step in both the oxidation of noradrenaline and reduction of noradrenochrome is a two-electron irreversible process governed by an EE mechanism. The kinetic parameters of the electrode reactions, i.e., charge transfer coefficient and the number of electrons transferred, alpha(1)n(1) = 0.11 and alpha(2)n(2) = 0.23, formal potentials modified with kinetics, E-1(0') = 0.65 (+/- 0.01) V and E-2(0') = 0.72V and standard rate cnstants, k(1)(0) = 7.0(+/-0.5)x10(-5) cm s(-1), for the first and second steps in the oxidation process of noradrenaline, and similarly, alpha(1)n(1) = 0.33, alpha(2)n(2) = 0.58, E-1(0') = 0.37(+/-0.01) V, E-0' = -0.25 (+/-0.01) V and k(1)(0) approximate to k(2)(0) = 1.06 (+/-0.05)x10(-4) cm s(-1) for the first and second steps in the reduction process of noradrenochrome were also determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrooxidation of ascorbic acid (AA) at the bis(4-pyridyl)disulfide (PySSPy) modified gold electrode was studied. The results showed that the oxidation process was pH-dependent. It was mainly due to the static interaction between AA and the modified

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrooxidation reaction of biliverdin (BY) is studied by in situ spectroelectrochemistry with rapid spectra scanning in an optically transparent thin-layer cell. The study reveals that the oxidation process of BY is very complicated and involves many stages. The average formal potential of BY is obtained for the first time as E-degrees' = 0.634 V (vs- Ag/AgCl), and the electrooxidation mechanism of BY is proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrochemical reduction of bilirubin (BR) in dimethyl formamide (DMF) is discussed in detail. The kinetic study of the electroreduction process of BR results in values of 7.94 x 10(-6) cm2/s for the diffusion coefficient and about 10(-3) cm/s for the standard heterogeneous electrode reaction rate constant. Thin-layer spectroelectrochemical investigations of BR exhibit a blue shift and a red shift at E(pc) = -0.6 V and E(pc) = -0.85 V respectively. They also give values of E0' = -1.55 V and n = 1 for the reduction process, and E0' = -1.35 V and n = 1 for the oxidation process. It was found experimentally that as the potential changes from negative to positive, the sequential color changes are similar to those of some of the color components in visible light. A mechanism for BR electroreduction in DMF has been proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes a broad range of experiments based on an aerosol flow-tube system to probe the interactions between atmospherically relevant aerosols with trace gases. This apparatus was used to obtain simultaneous optical and size distribution measurements using FTIR and SMPS measurements respectively as a function of relative humidity and aerosol chemical composition. Heterogeneous reactions between various ratios of ammonia gas and acidic aerosols were studied in aerosol form as opposed to bulk solutions. The apparatus is unique, in that it employed two aerosol generation methods to follow the size evolution of the aerosol while allowing detailed spectroscopic investigation of its chemical content. A novel chemiluminescence apparatus was also used to measure [NH4+]. SO2.H2O is an important species as it represents the first intermediate in the overall atmospheric oxidation process of sulfur dioxide to sulfuric acid. This complex was produced within gaseous, aqueous and aerosol SO2 systems. The addition of ammonia, gave mainly hydrogen sulfite tautomers and disulfite ions. These species were prevalent at high humidities enhancing the aqueous nature of sulfur (IV) species. Their weak acidity is evident due to the low [NH4+] produced. An increasing recognition that dicarboxylic acids may contribute significantly to the total acid burden in polluted urban environments is evident in the literature. It was observed that speciation within the oxalic, malonic and succinic systems shifted towards the most ionised form as the relative humidity was increased due to complete protonisation. The addition of ammonia produced ammonium dicarboxylate ions. Less reaction for ammonia with the malonic and succinic species were observed in comparison to the oxalic acid system. This observation coincides with the decrease in acidity of these organic species. The interaction between dicarboxylic acids and ‘sulfurous’/sulfuric acid has not been previously investigated. Therefore the results presented here are original to the field of tropospheric chemistry. SHO3-; S2O52-; HSO4-; SO42- and H1,3,5C2,3,4O4-;C2,3,4O4 2- were the main components found in the complex inorganic-organic systems investigated here. The introduction of ammonia produced ammonium dicarboxylate as well as ammonium disulfite/sulfate ions and increasing the acid concentrations increased the total amount of [NH4+].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasingly popular disrupted Langmuir–adsorption (DLA) kinetic model of photocatalysis does not contain an explicit function for the dependence of rate on the irradiance, ρ, but instead has a term αρθ, where, α is a constant of the system, and θ is also a constant equal to 1 or 0.5 at low or high ρ values, respectively. Several groups have recently replaced the latter term with an explicit function of the form χ1(−1 + (1 + χ2ρ)1/2), where χ1 and χ2, are constants that can be related to a proposed reaction scheme. Here the latter schemes are investigated, and revised to create a more credible form by assuming an additional hole trapping step. The latter may be the oxidation of water or a surface saturated with O2–. Importantly, this revision suggests that it is only applicable for low quantum yield/efficiency processes. The revised disrupted Langmuir–adsorption model is used to provide good fits to the kinetic data reported for a number of different systems including the photocatalytic oxidation of nitric oxide (NO), phenol (PhOH), and formic acid (FA).