988 resultados para phospholipase crystallographic analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [P-32] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by Western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [P-32] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC alpha and epsilon, the major isotypes of PKC in BPAECs, by TPA (100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [P-32] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phospholipase A(2) hydrolyzes phospholipids at the sn-2 position to cleave the fatty-acid ester bond of L-glycerophospholipids. The catalytic dyad (Asp99 and His48) along with a nucleophilic water molecule is responsible for enzyme hydrolysis. Furthermore, the residue Asp49 in the calcium-binding loop is essential for controlling the binding of the calcium ion and the catalytic action of phospholipase A2. To elucidate the structural role of His48 and Asp49, the crystal structures of three active-site single mutants H48N, D49N and D49K have been determined at 1.9 angstrom resolution. Although the catalytically important calcium ion is present in the H48N mutant, the crystal structure shows that proton transfer is not possible from the catalytic water to the mutated residue. In the case of the Asp49 mutants, no calcium ion was found in the active site. However, the tertiary structures of the three active-site mutants are similar to that of the trigonal recombinant enzyme. Molecular-dynamics simulation studies provide a good explanation for the crystallographic results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of inserting unsubstituted omega-amino acids into the strand segments of model beta-hairpin peptides was investigated by using four synthetic decapeptides, Boc-Lcu-Val-Xxx-Val-D-Pro-Gly-Leu-Xxx-Val-Val- OMe: pepticle 1 (Xxx=Gly), pepticle 2 (Xxx=beta Gly=beta hGly=homoglycine, beta-glycine), pepticle 3 (Xxx=gamma Abu=gamma-aminobutyric acid), pepticle 4 (Xxx= delta Ava=delta-aminovaleric acid). H-1 NMR studies (500 MHz, methanol) reveal several critical cross-strand NOEs, providing evidence for P-hairpin conformations in peptides 2-4. In peptide 3, the NMR results support the formation of the nucleating turn, however, evidence for cross-strand registry is not detected. Single-crystal X-ray diffraction studies of peptide 3 reveal a beta-hairpin conformation for both molecules in the crystallographic asymmetric unit, stabilized by four cross-strand hydrogen bonds, with the gamma Abu residues accommodated within the strands. The D-Pro-Gly segment in both molecules (A,B) adopts a type II' beta-turn conformation. The circular dichroism spectrum for peptide 3 is characterized by a negative CD band at 229 rim, whereas for peptides 2 and 4, the negative band is centered at 225 nm, suggesting a correlation between the orientation of the amide units in the strand segments and the observed CD pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for the delipidation of egg yolk plasma using phospholipase-C, n-heptane, and 1-butanol has been described. An aggregating protein fraction and a soluble protein fraction were separated by the action of phospholipase-C. The aggregating protein fraction freed of most of the lipids by treatment with n-heptane and 1-butanol was shown to be the apolipoproteins of yolk plasma, whereas the soluble proteins were identified as the livetins. Carbohydrate and the N-terminal amino acid analysis of these protein fractions are reported. A comparison of these protein fractions with the corresponding fractions obtained by formic acid delipidation of yolk plasma has been made. The gelation of yolk plasma by the action of phospholipase-C has been interpreted as an aggregation of lipoproteins caused by ionic interactions. The role of lecithin in maintaining the structural integrity of lipoproteins has been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

W/Cr codoped Bi4Ti3O12 ceramics, Bi4Ti3-xWxO12+x+0.2 wt%Cr2O3 (BITWC, x=0-0.15), were prepared using a solid-state reaction method. The crystallographic evolution and phase analysis were distinctly determined focusing on the X-ray diffraction peak changes in (020)/(200) and (220)/(1115) diffraction planes, by which the lattice parameters, a, b, and c can be refined. The thermal variations of permittivity, dielectric loss (tan delta), impedance, and electrical conductivity properties were characterized. A decrease in the values of Curie temperature from 675 degrees to 640 degrees C and an increase in the values of the dielectric constant due to an increase of W6+/Cr3+ content were observed. The highest piezoelectric constant, d(33) of 22 pC/N, was achieved with the composition of Bi4Ti2.975W0.025O12.025+0.2 wt% Cr2O3. Also, this composition had a lower electrical conductivity than the other investigated compositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical conformational analysis of fenamates, which are N-arylated derivatives of anthranilic acid or 2-aminonicotinic acid with different substituents on the aryl (phenyl) group, is reported. The analysis of these analgesics, which are believed to act through the inhibition of prostaglandin biosynthesis, was carried out using semi-empirical potential functions. The results and available crystallographic observations have been critically examined in terms of their relevance to drug action. Crystallographic studies of these drugs and their complexes have revealed that the fenamate molecules share a striking invariant feature, namely, the sixmembered ring bearing the carboxyl group is coplanar with the carboxyl group and the bridging imino group,the coplanarity being stabilized by resonance interactions and an internal hydrogen bond between the imino and carboxyl groups. The results of the theoretical analysis provide a conformational rationale for the observed invariant coplanarity. The second sixmembered ring, which provides hydrophobicity in a substantial part of the molecule, has limited conformational flexibility in meclofenamic, mefenamic and flufenamic acids. Comparison of the conformational energy maps of these acids shows that they could all assume the same conformation when bound to the relevant enzyme. The present study provides a structural explanation for the difference in the activity of niflumic acid, which can assume a conformation in which the whole molecule is nearly planar. The main role of the carboxyl group appears to be to provide a site for intermolecular interactions in addition to helping in stabilizing the invariant coplanar feature and providing hydrophilicity at one end of the molecule. The fenamates thus provide a good example of conformation- dependent molecular asymmetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of [Cu4L2(bipy)4(µ3-OH)2][ClO4]4 containing a Vitamin B6 ligand, pyridoxine (5-hydroxy-6-methylpyridine-3,4-dimethanol, HL), and 2,2′-bipyridine (bipy) has been determined by single-crystal X-ray analysis. This is the first report on a copper(II) complex having a ‘stepped-cubane’ structure. The compound crystallizes in the triclinic space group P[1 with combining macron](Z= 1) with a= 11.015(3), b= 11.902(1), c= 13.142(2)Å, α= 105.07(1), β= 102.22(1) and γ= 99.12(1)°; R= 0.054). The co-ordination geometry around each copper is trigonally distorted square pyramidal. Two of the basal sites are occupied by bipyridyl nitrogens in a bidentate fashion. The remaining basal positions for Cu(1) are filled by a phenolic oxygen and a 4-hydroxymethyl oxygen of the L moiety, whereas for Cu(2) they are occupied by two µ3-OH oxygens. The axial sites are occupied by a µ3-OH oxygen and the 4-hydroxymethyl oxygen of the same pyridoxine for Cu(1) and Cu(2), respectively. Both the bridging nature of the 4-hydroxymethyl oxygen of the L moiety and the unsymmetrical bridging nature of the µ3-OH groups with axial–equatorial bridging are novel features. The structure is discussed in relation to stepped-cubane structures reported in the literature. A comparative study is also made with µ3-hydroxo-bridged copper(II) complexes. Both the plasticity effect of CuII and the stacking interactions between the various rings appear to be important in stabilizing this unusual structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal structures of six binary salts involving aromatic amines as cations and hydrogen tartrates as anions are presented. The materials are 2,6-xylidinium-L-monohydrogen tartrate monohydrate, C12H18O6.5N, P22(1)2(1), a = 7.283(2) Angstrom, b = 17.030(2) Angstrom, c = 22.196(2) Angstrom, Z = 8; 2,6-xylidinium-D-dibenzoyl monohydrogen tartrate, C26H25O8N, P2(1), a = 7.906(1) Angstrom, b = 24.757(1) Angstrom, c = 13.166(1) Angstrom, beta = 105.01(1)degrees, Z = 4; 2,3-xylidinium-D-dibenzoyl monohydrogen tartrate monohydrate, C26H26O8.5N, P2(1), a = 7.837(1) Angstrom, b = 24.488(1) Angstrom, c = 13.763(1) Angstrom, beta = 105.69(1)degrees, Z = 4; 2-toluidinium-D-dibenzoyl monohydrogen tartrate, C25H23O8N, P2(1)2(1)2(1), a = 13.553(2) Angstrom, b = 15.869(3) Angstrom, c = 22.123(2) Angstrom, Z = 8; 3-toluidinium-D-dibenzoyl monohydrogen tartrate (1:1), C25H23O8N, P1, a = 7.916(3) Angstrom, b = 11.467(6) Angstrom, c = 14.203(8) Angstrom, alpha = 96.44(4)degrees, beta = 98.20(5)degrees, = 110.55(5)degrees, Z = 2; 3-toluidinium-D-dibenzoyl tartrate dihydrate (1:2), C32H36O10N, P1, a = 7.828(3) Angstrom, b = 8.233(1) Angstrom, c = 24.888(8) Angstrom, alpha = 93.98 degrees, beta = 94.58(3)degrees, = 89.99(2)degrees, Z = 2. An analysis of the hydrogen-bonding schemes in terms of crystal packing, stoichiometric variations, and substitutional variations in these materials provides insights to design hydrogen-bonded networks directed toward the engineering of crystalline nonlinear optical materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoinositide-specific phospholipase C (PLC) is involved in Ca2+ mediated signalling events that lead to altered cellular status. Using various sequence-analysis methods, we identified two conserved motifs in known PLC sequences. The identified motifs are located in the C2 domain of plant PLCs and are not found in any other protein. These motifs are specifically found in the Ca2+ binding loops and form adjoining beta strands. Further, we identified certain conserved residues that are highly distinct from corresponding residues of animal PLCs. The motifs reported here could be used to annotate plant-specific phospholipase C sequences. Furthermore, we demonstrated that the C2 domain alone is capable of targeting PLC to the membrane in response to a Ca2+ signal. We also showed that the binding event results from a change in the hydrophobicity of the C2 domain upon Ca2+ binding. Bioinformatic analyses revealed that all PLCs from Arabidopsis and rice lack a transmembrane domain, myristoylation and GPI-anchor protein modifications. Our bioinformatic study indicates that plant PLCs are located in the cytoplasm, the nucleus and the mitochondria. Our results suggest that there are no distinct isoforms of plant PLCs, as have been proposed to exist in the soluble and membrane associated fractions. The same isoform could potentially be present in both subcellular fractions, depending on the calcium level of the cytosol. Overall, these data suggest that the C2 domain of PLC plays a vital role in calcium signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The regulation of phospholipid biosynthesis in Saccharomyces cerevisiae through cis-acting upstream activating sequence inositol (UAS(ino)) and trans-acting elements, such as the INO2-INO4 complex and OPI1 by inositol supplementation in growth is thoroughly studied. In this study, we provide evidence for the regulation of lipid biosynthesis by phosphatidylinositol-specific phospholipase C (PLC) through UAS(ino) and the trans-acting elements. Gene expression analysis and radiolabelling experiments demonstrated that the overexpression of rice PLC in yeast cells altered phospholipid biosynthesis at the levels of transcriptional and enzyme activity. This is the first report implicating PLC in the direct regulation of lipid biosynthesis. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-chain fatty acids (SCFAs) play a major role in carbon cycle and can be utilized as a source of carbon and energy by bacteria. Salmonella typhimurium propionate kinase (StTdcD) catalyzes reversible transfer of the gamma-phosphate of ATP to propionate during L-threonine degradation to propionate. Kinetic analysis revealed that StTdcD possesses broad ligand specificity and could be activated by various SCFAs (propionate > acetate approximate to butyrate), nucleotides (ATP approximate to GTP > CTP approximate to TTP; dATP > dGTP > dCTP) and metal ions (Mg2+ approximate to Mn2+ > Co2+). Inhibition of StTdcD by tricarboxylic acid (TCA) cycle intermediates such as citrate, succinate, alpha-ketoglutarate and malate suggests that the enzyme could be under plausible feedback regulation. Crystal structures of StTdcD bound to PO4 (phosphate), AMP, ATP, Ap4 (adenosine tetraphosphate), GMP, GDP, GTP, CMP and CTP revealed that binding of nucleotide mainly involves hydrophobic interactions with the base moiety and could account for the broad biochemical specificity observed between the enzyme and nucleotides. Modeling and site-directed mutagenesis studies suggest Ala88 to be an important residue involved in determining the rate of catalysis with SCFA substrates. Molecular dynamics simulations on monomeric and dimeric forms of StTdcD revealed plausible open and closed states, and also suggested role for dimerization in stabilizing segment 235-290 involved in interfacial interactions and ligand binding. Observation of an ethylene glycol molecule bound sufficiently close to the gamma-phosphate in StTdcD complexes with triphosphate nucleotides supports direct in-line phosphoryl transfer. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of a complete solid solution between acetylacetonate (acac) complexes of chromium and gallium, (Cr1-x,Ga-x)(acac)(3) for 0.1 analysis confirming each composition to have a congruent melting point, making it a substitutional complex. Whereas the pure complexes (i.e. the end members of the solid solution, x = 0 and x = 1) are both centro-symmetric, a composition-dependent crystallographic phase transition to a non-centrosymmetric structure is found to occur for compositions with 0.4 < x < 0.9. Such a ``re-entrant'' crystallographic transition is interpreted to be due to the drive to overcome the disorder present in certain centrosymmetric chromium-rich compositions, by going over to a non-centrosymmetric structure with a doubling of the unit cell. The substitutional complex is shown to lead to a substitutional oxide with the beta-gallate structure. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a combined forming and fracture limit diagram, fractured void coalescence and texture analysis have been experimentally evaluated for the commercially available aluminum alloy Al 8011 sheet annealed at different temperatures viz. 200 degrees C, 250 degrees C, 300 degrees C and 350 degrees C. The sheets were examined at different annealing temperatures on microstructure, tensile properties, formability and void coalescence. The fractured surfaces of the formed samples were examined using scanning electron microscope (SEM) and these images were correlated with fracture behavior and formability of sheet metals. Formability of Al 8011 was studied and examined at various annealing temperatures using their bulk X-ray crystallographic textures and ODF plots. Forming limit diagrams, void coalescence parameters and crystallographic textures were correlated with normal anisotropy of the sheet metals annealed at different temperatures. (C) 2013 Politechnika Wroclawska. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A(2)* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoinduced electron transfer processes in a nanoheterostructured semiconductor assembly are complex and depend on various parameters Of the constituents of the assembly. We present here the ultrafast electron transfer characteristics of an assembly comprised of a Wide band semiconductor, titanium dioxide (TiO2), attached to light-harvesting cadmium sulfide (CdS) nanotrystals of varying crystallographic phase content. Quantitative analysis of Synchrotron high-resolution X-ray. diffraction data of CdS nanocrystals precisely reveals the presence of both wurtzite and zinc blende phases in varying amounts. The,estimated content of crystal phases is observed to be strongly dependent on an important synthesis parameter, viz., the ratio of the two solvents. The biphasit nature of CdS influences directly the shape of the nanocrystal at long reaction times as well as the transfer of the photoexcited electrons from the CdS to TiO2 as obtained from transient absorption spectroscopy. A higher amount of zinc blende Phase is observed to be beneficial for fast electron transfer across the CdS-TiO2 interface. The electron transfer rate constant differs by one order of magnitude between the CdS nanocryStals and varies linearly with the fraction of the phases.