994 resultados para periodic model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hysteresis models that eliminate the artificial pumping errors associated with the Kool-Parker (KP) soil moisture hysteresis model, such as the Parker-Lenhard (PL) method, can be computationally demanding in unsaturated transport models since they need to retain the wetting-drying history of the system. The pumping errors in these models need to be eliminated for correct simulation of cyclical systems (e.g. transport above a tidally forced watertable, infiltration and redistribution under periodic irrigation) if the soils exhibit significant hysteresis. A modification is made here to the PL method that allows it to be more readily applied to numerical models by eliminating the need to store a large number of soil moisture reversal points. The modified-PL method largely eliminates any artificial pumping error and so essentially retains the accuracy of the original PL approach. The modified-PL method is implemented in HYDRUS-1D (version 2.0), which is then used to simulate cyclic capillary fringe dynamics to show the influence of removing artificial pumping errors and to demonstrate the ease of implementation. Artificial pumping errors are shown to be significant for the soils and system characteristics used here in numerical experiments of transport above a fluctuating watertable. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blurred edges appear sharper in motion than when they are stationary. We have previously shown how such distortions in perceived edge blur may be explained by a model which assumes that luminance contrast is encoded by a local contrast transducer whose response becomes progressively more compressive as speed increases. To test this model further, we measured the sharpening of drifting, periodic patterns over a large range of contrasts, blur widths, and speeds Human Vision. The results indicate that, while sharpening increased with speed, it was practically invariant with contrast. This contrast invariance cannot be explained by a fixed compressive nonlinearity since that predicts almost no sharpening at low contrasts.We show by computational modelling of spatiotemporal responses that, if a dynamic contrast gain control precedes the static nonlinear transducer, then motion sharpening, its speed dependence, and its invariance with contrast can be predicted with reasonable accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a template model for perception of edge blur and identify a crucial early nonlinearity in this process. The main principle is to spatially filter the edge image to produce a 'signature', and then find which of a set of templates best fits that signature. Psychophysical blur-matching data strongly support the use of a second-derivative signature, coupled to Gaussian first-derivative templates. The spatial scale of the best-fitting template signals the edge blur. This model predicts blur-matching data accurately for a wide variety of Gaussian and non-Gaussian edges, but it suffers a bias when edges of opposite sign come close together in sine-wave gratings and other periodic images. This anomaly suggests a second general principle: the region of an image that 'belongs' to a given edge should have a consistent sign or direction of luminance gradient. Segmentation of the gradient profile into regions of common sign is achieved by implementing the second-derivative 'signature' operator as two first-derivative operators separated by a half-wave rectifier. This multiscale system of nonlinear filters predicts perceived blur accurately for periodic and aperiodic waveforms. We also outline its extension to 2-D images and infer the 2-D shape of the receptive fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface epithelial cells of the stomach represent a major component of the gastric barrier. A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. Primary cultures of guinea pig gastric mucous epithelial cells were grown on filter inserts (Transwells®) for 3 days. Tight-junction formation, assessed by transepithelial electrical resistance (TEER) and permeability of mannitol and fluorescein, was enhanced when collagen IV rather than collagen I was used to coat the polycarbonate filter. TEER for cells grown on collagen IV was close to that obtained with intact guinea pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [ 3H]glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on plastic culture plates, but no major difference was found between cells grown on collagens I and IV. The proportion of cells, which stained positively for mucin with periodic acid Schiff reagent, was greater than 95% for all culture conditions. Monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide, and were resistant to acidification of the apical medium to pH 3.0 for 30 min. A screen of nonsteroidal anti-inflammatory drugs revealed a novel effect of diclofenac and niflumic acid in reversibly reducing permeability by the paracellular route. In conclusion, the mucous cell preparation grown on collagen IV represents a good model of the gastric surface epithelium suitable for screening procedures. © 2005 The Society for Biomolecular Screening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform numerical simulations of finite temperature quantum turbulence produced through thermal counterflow in superfluid 4He, using the vortex filament model. We investigate the effects of solid boundaries along one of the Cartesian directions, assuming a laminar normal fluid with a Poiseuille velocity profile, whilst varying the temperature and the normal fluid velocity. We analyze the distribution of the quantized vortices, reconnection rates, and quantized vorticity production as a function of the wall-normal direction. We find that the quantized vortex lines tend to concentrate close to the solid boundaries with their position depending only on temperature and not on the counterflow velocity. We offer an explanation of this phenomenon by considering the balance of two competing effects, namely the rate of turbulent diffusion of an isotropic tangle near the boundaries and the rate of quantized vorticity production at the center. Moreover, this yields the observed scaling of the position of the peak vortex line density with the mutual friction parameter. Finally, we provide evidence that upon the transition from laminar to turbulent normal fluid flow, there is a dramatic increase in the homogeneity of the tangle, which could be used as an indirect measure of the transition to turbulence in the normal fluid component for experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study wave propagation, dispersion relations, and energy relations for linear elastic periodic systems are analyzed. In particular, the dispersion relations for monoatomic chain of infinite dimension are obtained analytically by writing the Block-type wave equation for a unit cell in order to capture the dynamic behavior for chains under prescribed vibration. By comparing the discretized model (mass-spring chain) with the solid bar system, the nonlinearity of the dispersion relation for chain indicates that the periodic lattice is dispersive in contrast to the continuous rod, which is non dispersive. Further investigations have been performed considering one-dimensional diatomic linear elastic mass-spring chain. The dispersion relations, energy velocity, and group velocity have been derived. At certain range of frequencies harmonic plane waves do not propagate in contrast with monoatomic chain. Also, since the diatomic chain considered is a linear elastic chain, both of the energy velocity and the group velocity are identical. As long as the linear elastic condition is considered the results show zero flux condition without residual energy. In addition, this paper shows that the diatomic chain dispersion relations are independent on the unit cell scheme. Finally, an extension for the study covers the dispersion and energy relations for 2D- grid system. The 2x2 grid system show a periodicity of the dispersion surface in the wavenumber domain. In addition, the symmetry of the surface can be exploited to identify an Irreducible Brillouin Zone (IBZ). Compact representations of the dispersion properties of multidimensional periodic systems are obtained by plotting frequency as the wave vector’s components vary along the boundary of the IBZ, which leads to a widely accepted and effective visualization of bandgaps and overall dispersion properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limit-periodic (LP) structures exhibit a type of nonperiodic order yet to be found in a natural material. A recent result in tiling theory, however, has shown that LP order can spontaneously emerge in a two-dimensional (2D) lattice model with nearest-and next-nearest-neighbor interactions. In this dissertation, we explore the question of what types of interactions can lead to a LP state and address the issue of whether the formation of a LP structure in experiments is possible. We study emergence of LP order in three-dimensional (3D) tiling models and bring the subject into the physical realm by investigating systems with realistic Hamiltonians and low energy LP states. Finally, we present studies of the vibrational modes of a simple LP ball and spring model whose results indicate that LP materials would exhibit novel physical properties.

A 2D lattice model defined on a triangular lattice with nearest- and next-nearest-neighbor interactions based on the Taylor-Socolar (TS) monotile is known to have a LP ground state. The system reaches that state during a slow quench through an infinite sequence of phase transitions. Surprisingly, even when the strength of the next-nearest-neighbor interactions is zero, in which case there is a large degenerate class of both crystalline and LP ground states, a slow quench yields the LP state. The first study in this dissertation introduces 3D models closely related to the 2D models that exhibit LP phases. The particular 3D models were designed such that next-nearest-neighbor interactions of the TS type are implemented using only nearest-neighbor interactions. For one of the 3D models, we show that the phase transitions are first order, with equilibrium structures that can be more complex than in the 2D case.

In the second study, we investigate systems with physical Hamiltonians based on one of the 2D tiling models with the goal of stimulating attempts to create a LP structure in experiments. We explore physically realizable particle designs while being mindful of particular features that may make the assembly of a LP structure in an experimental system difficult. Through Monte Carlo (MC) simulations, we have found that one particle design in particular is a promising template for a physical particle; a 2D system of identical disks with embedded dipoles is observed to undergo the series of phase transitions which leads to the LP state.

LP structures are well ordered but nonperiodic, and hence have nontrivial vibrational modes. In the third section of this dissertation, we study a ball and spring model with a LP pattern of spring stiffnesses and identify a set of extended modes with arbitrarily low participation ratios, a situation that appears to be unique to LP systems. The balls that oscillate with large amplitude in these modes live on periodic nets with arbitrarily large lattice constants. By studying periodic approximants to the LP structure, we present numerical evidence for the existence of such modes, and we give a heuristic explanation of their structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce mémoire de maîtrise traite de la théorie de la ruine, et plus spécialement des modèles actuariels avec surplus dans lesquels sont versés des dividendes. Nous étudions en détail un modèle appelé modèle gamma-omega, qui permet de jouer sur les moments de paiement de dividendes ainsi que sur une ruine non-standard de la compagnie. Plusieurs extensions de la littérature sont faites, motivées par des considérations liées à la solvabilité. La première consiste à adapter des résultats d’un article de 2011 à un nouveau modèle modifié grâce à l’ajout d’une contrainte de solvabilité. La seconde, plus conséquente, consiste à démontrer l’optimalité d’une stratégie de barrière pour le paiement des dividendes dans le modèle gamma-omega. La troisième concerne l’adaptation d’un théorème de 2003 sur l’optimalité des barrières en cas de contrainte de solvabilité, qui n’était pas démontré dans le cas des dividendes périodiques. Nous donnons aussi les résultats analogues à l’article de 2011 en cas de barrière sous la contrainte de solvabilité. Enfin, la dernière concerne deux différentes approches à adopter en cas de passage sous le seuil de ruine. Une liquidation forcée du surplus est mise en place dans un premier cas, en parallèle d’une liquidation à la première opportunité en cas de mauvaises prévisions de dividendes. Un processus d’injection de capital est expérimenté dans le deuxième cas. Nous étudions l’impact de ces solutions sur le montant des dividendes espérés. Des illustrations numériques sont proposées pour chaque section, lorsque cela s’avère pertinent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many dynamical processes are subject to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process. These types of phenomena are described well by what are referred to as impulsive differential equations, systems of differential equations coupled with discrete mappings in state space. In this thesis we employ impulsive differential equations to model disease transmission within an industrial livestock barn. In particular we focus on the poultry industry and a viral disease of poultry called Marek's disease. This system lends itself well to impulsive differential equations. Entire cohorts of poultry are introduced and removed from a barn concurrently. Additionally, Marek's disease is transmitted indirectly and the viral particles can survive outside the host for weeks. Therefore, depopulating, cleaning, and restocking of the barn are integral factors in modelling disease transmission and can be completely captured by the impulsive component of the model. Our model allows us to investigate how modern broiler farm practices can make disease elimination difficult or impossible to achieve. It also enables us to investigate factors that may contribute to virulence evolution. Our model suggests that by decrease the cohort duration or by decreasing the flock density, Marek's disease can be eliminated from a barn with no increase in cleaning effort. Unfortunately our model also suggests that these practices will lead to disease evolution towards greater virulence. Additionally, our model suggests that if intensive cleaning between cohorts does not rid the barn of disease, it may drive evolution and cause the disease to become more virulent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a minimal integrate-and-fire based model of a "ghostbursting" neuron under periodic stimulation. These neurons are involved in sensory processing in weakly electric fish. There exist regions in parameter space in which the model neuron is mode-locked to the stimulation. We analyse this locked behavior and examine the bifurcations that define the boundaries of these regions. Due to the discontinuous nature of the flow, some of these bifurcations are nonsmooth. This exact analysis is in excellent agreement with numerical simulations, and can be used to understand the response of such a model neuron to biologically realistic input.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce mémoire de maîtrise traite de la théorie de la ruine, et plus spécialement des modèles actuariels avec surplus dans lesquels sont versés des dividendes. Nous étudions en détail un modèle appelé modèle gamma-omega, qui permet de jouer sur les moments de paiement de dividendes ainsi que sur une ruine non-standard de la compagnie. Plusieurs extensions de la littérature sont faites, motivées par des considérations liées à la solvabilité. La première consiste à adapter des résultats d’un article de 2011 à un nouveau modèle modifié grâce à l’ajout d’une contrainte de solvabilité. La seconde, plus conséquente, consiste à démontrer l’optimalité d’une stratégie de barrière pour le paiement des dividendes dans le modèle gamma-omega. La troisième concerne l’adaptation d’un théorème de 2003 sur l’optimalité des barrières en cas de contrainte de solvabilité, qui n’était pas démontré dans le cas des dividendes périodiques. Nous donnons aussi les résultats analogues à l’article de 2011 en cas de barrière sous la contrainte de solvabilité. Enfin, la dernière concerne deux différentes approches à adopter en cas de passage sous le seuil de ruine. Une liquidation forcée du surplus est mise en place dans un premier cas, en parallèle d’une liquidation à la première opportunité en cas de mauvaises prévisions de dividendes. Un processus d’injection de capital est expérimenté dans le deuxième cas. Nous étudions l’impact de ces solutions sur le montant des dividendes espérés. Des illustrations numériques sont proposées pour chaque section, lorsque cela s’avère pertinent.