888 resultados para pediatric dry eye
Resumo:
The otoliths and lenses of the temperate damselfish Parma microlepis (Gunther) (Pomacentridae) showed similar differences in trace-metal profile for selected locations along the coast of New South Wales, Australia. Otoliths and lenses displayed a differential ability to accumulate metals. Metal concentrations were ranked differently in the two structures (e.g. Sr > Ba > Pb > Rb > Hg in otoliths, and Hg > Sr similar or equal to Rb > Pb > Ba in lenses), and where similar metals were accumulated, they were accumulated at vastly different concentrations (e.g. Ba concentrations in otoliths are a thousand-fold greater than in lenses). Analyses of the otoliths and lenses of P. microlepis from locations close to Sydney and up to 100 kill from the city were able to distinguish amongst these locations with respect to a number of metals, namely Ba, Mn and Hg. Multivariate analyses of otolith and lens data gave similar results among locations (agreement was obtained for Ii out of 15 pair-wise comparisons), and differences were attributable to the differential ability of the two structures to accumulate metals such as Mn and Hg. Trace-metal differences between locations were found to coincide with the proximity of sewage (including industrial waste) and petroleum storage facilities to the different locations.
Resumo:
The deep-sea pearleye, Scopelarchus michaelsarsi (Scopelarchidae) is a mesopelagic teleost with asymmetric or tubular eyes. The main retina subtends a large dorsal binocular field, while the accessory retina subtends a restricted monocular field of lateral visual space. Ocular specializations to increase the lateral visual field include an oblique pupil and a corneal lens pad. A detailed morphological and topographic study of the photoreceptors and retinal ganglion cells reveals seven specializations: a centronasal region of the main retina with ungrouped rod-like photoreceptors overlying a retinal tapetum; a region of high ganglion cell density (area centralis of 56.1x10(3) cells per mm(2)) in the centrolateral region of the main retina; a centrotemporal region of the main retina with grouped rod-like photoreceptors; a region (area giganto cellularis) of large (32.2+/-5.6 mu m(2)), alpha-like ganglion cells arranged in a regular array (nearest neighbour distance 53.5+/-9.3 mu m with a conformity ratio of 5.8) in the temporal main retina; an accessory retina with grouped rod-like photoreceptors; a nasotemporal band of a mixture of rod-and cone-like photoreceptors restricted to the ventral accessory retina; and a retinal diverticulum comprised of a ventral region of differentiated accessory retina located medial to the optic nerve head. Retrograde labelling from the optic nerve with DiI shows that approximately 14% of the cells in the ganglion cell layer of the main retina are displaced amacrine cells at 1.5 mm eccentricity. Cryosectioning of the tubular eye confirms Matthiessen's ratio (2.59), and calculations of the spatial resolving power suggests that the function of the area centralis (7.4 cycles per degree/8.1 minutes of are) and the cohort of temporal alpha-like ganglion cells (0.85 cycles per degree/70.6 minutes of are) in the main retina may be different. Low summation ratios in these various retinal zones suggests that each zone may mediate distinct visual tasks in a certain region of the visual field by optimizing sensitivity and/or resolving power.
Resumo:
Xylem sap from woody species in the wet/dry tropics of northern Australia was analyzed for N compounds. At the peak of the dry season, arginine was the main N compound in sap of most species of woodlands and deciduous monsoon forest. In the wet season, a marked change occurred with amides becoming the main sap N constituents of most species. Species from an evergreen monsoon forest, with a permanent water source, transported amides in the dry season. In the dry season, nitrate accounted for 7 and 12% of total xylem sap N in species of deciduous and evergreen monsoon forests, respectively In the wet season, the proportion of N present as nitrate increased to 22% in deciduous monsoon forest species. These results suggest that N is taken up and assimilated mainly in the wet season and that this newly assimilated N is mostly transported as amide-N (woodland species, monsoon forest species) and nitrate (monsoon forest species). Arginine is the form in which stored N is remobilized and transported by woodland and deciduous monsoon forest species in the dry season. Several proteins, which may represent bark storage proteins, were detected in inner bark tissue from a range of trees in the dry season, indicating that, although N uptake appears to be limited in the dry season, the many tree and shrub species that produce flowers, fruit or leaves in the dry season use stored N to support growth. Nitrogen characteristics of the studied species are discussed in relation to the tropical environment.
Resumo:
Matthiessen's ratio (distance from centre of lens to retina: lens radius) was measured in developing black bream, Acanthopagrus butcheri (Sparidae, Teleostei). The value decreased over the first 10 days post-hatch from 3.6 to 2.3 along the nasal and from four to 2.6 along temporal axis. Coincidentally, there was a decrease in the focal ratio of the lens (focal length:lens radius). Morphologically, the accommodatory retractor lentis muscle appeared to become functional between 10-12 days post-hatch. The results suggest that a higher focal ratio compensates for the relatively high Matthiessen's ratio brought about by constraints of small eye size during early development. Combined with differences in axial length, this provides a means for larval fish to focus images from different distances prior to the ability to accommodate. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The eye lenses of Parma microlepis from the rocky barrens of Sydney (New South Wales, Australia) were found to contain Ba, Hg, Rb, and Sr at concentrations above the quantitative detection limits of solution-based inductively-coupled plasma-mass spectrometry (ICP-MS). Lenses were separated into the hard central nucleus and the softer surrounding cortex. Nuclei contained lower (equal for Ba) concentrations of these metals. Biochemical analysis of the protein composition of these lenses revealed differences in the ratio of gamma-crystallin to beta-crystallin in the lens nucleus and cortex. These changes were shown to be attributable both to protein degradation and changes in protein synthesis as fish age. Such changes may lead to the loss of sequestered metals from older cell layers, or change the affinity of new layers for particular trace metals. Differential binding affinities of these crystallins may, therefore, partially account for trace-metal differences observed in the lens nucleus and cortex.
Resumo:
Retention of green leaf area at maturity (GLAM), known as stay-green, is used as an indicator of postanthesis drought resistance in sorghum [Sorghum bicolor (L.) Moench] breeding programs in the USA and Australia. The critical issue is whether maintaining green leaves under postanthesis drought increases grain yield in stay-green compared with senescent hybrids. Field studies were undertaken in northeastern Australia on a cracking and self-mulching gay clay. Nine closely related hybrids varying in rate of leaf senescence were grown under two water-limiting regimes, post-flowering water deficit and terminal (pre- and postflowering) water deficit, and a fully irrigated control. Under terminal water deficit, grain yield tvas correlated positively with GLAM (r = 0.75**) and negatively with rate of leaf senescence (r = -0.74**). Grain yield also increased by approximate to 0.35 Mg ha(-1) for every day that onset of leaf senescence was delayed beyond 76 DAE in the water-limited treatments. Stay-green hybrids produced 47% more postanthesis biomass than their senescent counterparts (920 vs. 624 g m(-2)) under the terminal water deficit regime. No differences in grain yield were found among eight of the nine hybrids under fully irrigated conditions, suggesting that the stay-green trait did not constrain yield in the well-watered control. The results indicate that sorghum hybrids possessing the stay-green trait have a significant yield advantage under postanthesis drought compared with hybrids not possessing this trait.
Resumo:
Many species of stomatopod crustaceans have multiple spectral classes of photoreceptors in their retinas. Behavioral evidence also indicates that stomatopods are capable of discriminating objects by their spectral differences alone, Most animals use only two to four different types of photoreceptors in their color vision systems, typically with broad sensitivity functions, but the stomatopods apparently include eight or more narrowband photoreceptor classes for color recognition. It is also known that stomatopods use several colored body regions in social interactions. To examine why stomatopods may be so 'concerned' with color, we measured the absorption spectra of visual pigments and intrarhabdomal filters, and the reflectance spectra from different parts of the bodies of several individuals of the gonodactyloid stomatopod species, Gonodactylus smithii. We then applied a model of multiple dichromatic channels for color encoding to examine whether the finely tuned color vision was specifically co-evolved with their complex color signals. Although the eye design of stomatopods seems suitable for detecting color signals of their own, the detection of color signals from other animals, such as reef fishes, can be enhanced as well. Color vision in G. smithii is therefore not exclusively adapted to detect its own color signals, but the spectral tuning of some photoreceptors (e.g. midband Rows 2 and 3) enhances the contrast of certain color signals to a large enough degree to make co-evolution between color vision and these rather specific color signals likely. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Spray-dried blood plasma (DBP) (10.9 g/100 g [w/w] nitrogen) was added to medium-protein biscuit flour (1.4 g/100 g N) during pasta manufacture. High-protein durum semolina (2.0 g/100 g N) Was used to produce the control pasta. Sensory data indicated that the addition of DBP produced pasta with significantly better colour intensity and acceptability. aroma intensity, flaN our intensity. textural strength, texture acceptability, aftertaste intensity, aftertaste acceptability. and overall acceptability The DBP/biscuit flour formulation that gave the optimum balance between pasta protein content and organoleptic acceptability contained 2.2 g/100 g DBP. A higher content of DBP resulted in increased protein levels, but these pasta formulations, ere less acceptable organoleptically. (C) 2002 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
This article aims to analyse the introduction of environmental issues in the context of the production function, which has been referred to as the organisational area to lead corporate environmental management. With that purpose, the theoretical references for corporate environmental management and the necessary alterations in production function have been organised to include environmental aspects, especially in terms of product and process development, quality management, and logistics. Considering that this research field still lacks empirical evidence for Brazilian companies, four case studies were conducted using companies located in the country. The environmental management maturity level of those companies tends to follow the rate with which the environmental issue is introduced in production sub-areas, especially in the product development process. However, in most cases we found that the companies had difficulties in structuring the insertion of the environmental dimension in logistics. The final notes point out the distance observed between what is recommended by international literature and the reality of Brazilian companies in the challenge of making the production function environmentally friendly.
Resumo:
Aim The aim of this study was to assess the causal mechanisms underlying populational subdivision in Drosophila gouveai, a cactophilic species associated with xeric vegetation enclaves in eastern Brazil. A secondary aim was to investigate the genetic effects of Pleistocene climatic fluctuations on these environments. Location Dry vegetation enclaves within the limits of the Cerrado domain in eastern Brazil. Methods We determined the mitochondrial DNA haplotypes of 55 individuals (representing 12 populations) based on sequence data of a 483-bp fragment from the cytochrome c oxidase subunit II (COII) gene. Phylogenetic and coalescent analyses were used to test for the occurrence of demographic events and to infer the time of divergence amongst genetically independent groups. Results Our analyses revealed the existence of two divergent subclades (G1 and G2) plus an introgressed clade restricted to the southernmost range of D. gouveai. Subclades G1 and G2 displayed genetic footprints of range expansion and segregated geographical distributions in south-eastern and some central highland regions, east and west of the Parana River valley. Molecular dating indicated that the main demographic and diversification events occurred in the late to middle Pleistocene. Main conclusions The phylogeographical and genetic patterns observed for D. gouveai in this study are consistent with changes in the distribution of dry vegetation in eastern Brazil. All of the estimates obtained by molecular dating indicate that range expansion and isolation pre-dated the Last Glacial Maximum, occurring during the late to middle Pleistocene, and were probably triggered by climatic changes during the Pleistocene. The current patchy geographical distribution and population subdivision in D. gouveai is apparently closely linked to these past events.
Resumo:
Purpose of review The nutritional assessment of children in the pediatric ICU is unique in view of the metabolic changes of the underlying disease. This review addresses the use and limitations of anthropometry and laboratorial and body composition markers in the diagnosis of the nutritional status of such patients. Recent findings The presence of inflammatory activity leads to body composition changes (lean mass reduction) and undernutrition. Nutritional assessment in pediatric ICU must prioritize anthropometric and laboratory markers that can differentiate body composition to detect specific macronutrient and micronutrient deficiencies and assessment of the inflammatory activity. Summary Nutritional assessment is one of the main aspects of the pediatric intensive care patient and is the most important tool to avoid hospital undernutrition. There is currently no gold standard for nutritional assessment in the pediatric ICU. The results of anthropometric and laboratory markers must be jointly analyzed, but individually interpreted according to disease and metabolic changes, in order to reach a correct diagnosis of the nutritional status and to plan and monitor the nutritional treatment.