132 resultados para parallelepipedic xerogel monoliths (PSSG)
Resumo:
This work aims to study the structural characteristics of silica gels obtained from the acid hydrolysis of tetraethoxysilane (TEOS) in water solutions with different concentrations of sodium dodecyl sulfate (SDS). The structural characteristics were studied in stages ranging from the wet gel to the dry stages of the gels (aerogels and xerogels). Aerogels were obtained by ambient pressure drying (APD) after silylation process using trimethylchlorosilane (TMCS) as silylating agent. Xerogels were obtained by conventional evaporating the liquid phase from non silylated gels. The samples were characterized by nitrogen adsorption and small angle X-ray scattering (SAXS). The structure of the wet gels and of the aerogels prepared with the surfactant exhibited characteristics of mass-fractal structures with fractal dimension D in the range 2.1-2.2 for the wet gels and 2.3-2.4 for the aerogels. The characteristic size of the fractal domain reduces while the size a0 of the primary silica particle composing the fractal structure increases with the drying of the gels, in a process in which share of the porosity is eliminated. Aerogels exhibited typical values for the specific surface of 900 m2g-1 and of 3.5 cm3.g-1 for the total pore volume. These values are correspondingly comparable to those of the aerogels prepared by supercritical drying, since the silylation process replaces hydrophilic –OH groups by hydrophobic –Si-R3 ones, inhibiting the porosity elimination on drying. The silica particle size also increases lightly with the silylation because the attachment of the –Si-R3 groups on the silica surface. The pore size distribution curves of the aerogels are similar for all samples exhibiting a maximum in around 40 nm, independent the concentration of surfactant. This suggests that the characteristic size of 40 nm is due to the association of surfactant micelles... (Complete abstract click electronic access below)
Resumo:
Sol–gel derived poly(oxyethylene)/siloxane organic–inorganic di-ureasil hybrids containing different amounts (20–60% mol) of methacrylic acid (McOH) modified zirconium oxo-clusters (Zr-OMc) were processed as thin films and transparent and shape controlled monoliths. Laser direct writing was used to create channel waveguides, Bragg gratings, Fabry–Perot cavities and optical filters. The resulting Fabry–Perot optical cavity displays a free spectral range of 16.55 GHz and a fringe intensity contrast of 5.35 dB. Optical rejection values between 6.7 and 10.4 dB were obtained by varying the amount of the Zr-OMc oxo-clusters.
Resumo:
Metal oxidenanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first processproducesdirectly a two-phase material, while the sol-gelpowder never showed second phase below 600 degrees C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.
Resumo:
In this work, mesoporous titania is prepared by templating latex sphere arrays with four different sphere diameters at the micrometric scale (phi > 1 mu m). The mesoporous titania homogeneously covers the latex spheres and substrate, forming a thin coating characterized by N-2 adsorption isotherm, small angle X-rays scattering, atomic force, field emission and transmission electronic microscopies. Mesoporous titania has been templated into different shapes such as hollow particles and monoliths according to the amount of sol used to fill the voids of the close packed latex spheres. Titania topography strongly depends on the adsorption of polymeric segments over latex spheres surface, which could be decreased by changing the dimensions of latex spheres (phi = 9.5 mu m) generating a lamellar architecture. Thus, micrometric latex sphere arrays can be used to achieve new surface patterns for mesoporous materials via a fast and inexpensive chemical route for construction of functional devices in different technological fields such as energy conversion, inclusion chemistry and biomaterials. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The development of safe, high energy and power electrochemical energy-conversion systems can be a response to the worldwide demand for a clean and low-fuel-consuming transport. This thesis work, starting from a basic studies on the ionic liquid (IL) electrolytes and carbon electrodes and concluding with tests on large-size IL-based supercapacitor prototypes demonstrated that the IL-based asymmetric configuration (AEDLCs) is a powerful strategy to develop safe, high-energy supercapacitors that might compete with lithium-ion batteries in power assist-hybrid electric vehicles (HEVs). The increase of specific energy in EDLCs was achieved following three routes: i) the use of hydrophobic ionic liquids (ILs) as electrolytes; ii) the design and preparation of carbon electrode materials of tailored morphology and surface chemistry to feature high capacitance response in IL and iii) the asymmetric double-layer carbon supercapacitor configuration (AEDLC) which consists of assembling the supercapacitor with different carbon loadings at the two electrodes in order to exploit the wide electrochemical stability window (ESW) of IL and to reach high maximum cell voltage (Vmax). Among the various ILs investigated the N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR1(2O1)TFSI) was selected because of its hydrophobicity and high thermal stability up to 350 °C together with good conductivity and wide ESW, exploitable in a wide temperature range, below 0°C. For such exceptional properties PYR1(2O1)TFSI was used for the whole study to develop large size IL-based carbon supercapacitor prototype. This work also highlights that the use of ILs determines different chemical-physical properties at the interface electrode/electrolyte with respect to that formed by conventional electrolytes. Indeed, the absence of solvent in ILs makes the properties of the interface not mediated by the solvent and, thus, the dielectric constant and double-layer thickness strictly depend on the chemistry of the IL ions. The study of carbon electrode materials evidences several factors that have to be taken into account for designing performing carbon electrodes in IL. The heat-treatment in inert atmosphere of the activated carbon AC which gave ACT carbon featuring ca. 100 F/g in IL demonstrated the importance of surface chemistry in the capacitive response of the carbons in hydrophobic ILs. The tailored mesoporosity of the xerogel carbons is a key parameter to achieve high capacitance response. The CO2-treated xerogel carbon X3a featured a high specific capacitance of 120 F/g in PYR14TFSI, however, exhibiting high pore volume, an excess of IL is required to fill the pores with respect to that necessary for the charge-discharge process. Further advances were achieved with electrodes based on the disordered template carbon DTC7 with pore size distribution centred at 2.7 nm which featured a notably high specific capacitance of 140 F/g in PYR14TFSI and a moderate pore volume, V>1.5 nm of 0.70 cm3/g. This thesis work demonstrated that by means of the asymmetric configuration (AEDLC) it was possible to reach high cell voltage up to 3.9 V. Indeed, IL-based AEDLCs with the X3a or ACT carbon electrodes exhibited specific energy and power of ca. 30 Wh/kg and 10 kW/kg, respectively. The DTC7 carbon electrodes, featuring a capacitance response higher of 20%-40% than those of X3a and ACT, respectively, enabled the development of a PYR14TFSI-based AEDLC with specific energy and power of 47 Wh/kg and 13 kW/kg at 60°C with Vmax of 3.9 V. Given the availability of the ACT carbon (obtained from a commercial material), the PYR1(2O1)TFSI-based AEDLCs assembled with ACT carbon electrodes were selected within the EU ILHYPOS project for the development of large-size prototypes. This study demonstrated that PYR1(2O1)TFSI-based AEDLC can operate between -30°C and +60°C and its cycling stability was proved at 60°C up to 27,000 cycles with high Vmax up to 3.8 V. Such AEDLC was further investigated following USABC and DOE FreedomCAR reference protocols for HEV to evaluate its dynamic pulse-power and energy features. It was demonstrated that with Vmax of 3.7 V at T> 30 °C the challenging energy and power targets stated by DOE for power-assist HEVs, and at T> 0 °C the standards for the 12V-TSS and 42V-FSS and TPA 2s-pulse applications are satisfied, if the ratio wmodule/wSC = 2 is accomplished, which, however, is a very demanding condition. Finally, suggestions for further advances in IL-based AEDLC performance were found. Particularly, given that the main contribution to the ESR is the electrode charging resistance, which in turn is affected by the ionic resistance in the pores that is also modulated by pore length, the pore geometry is a key parameter in carbon design not only because it defines the carbon surface but also because it can differentially “amplify” the effect of IL conductivity on the electrode charging-discharging process and, thus, supercapacitor time constant.
Resumo:
Chromatography is the most widely used technique for high-resolution separation and analysis of proteins. This technique is very useful for the purification of delicate compounds, e.g. pharmaceuticals, because it is usually performed at milder conditions than separation processes typically used by chemical industry. This thesis focuses on affinity chromatography. Chromatographic processes are traditionally performed using columns packed with porous resin. However, these supports have several limitations, including the dependence on intra-particle diffusion, a slow mass transfer mechanism, for the transport of solute molecules to the binding sites within the pores and high pressure drop through the packed bed. These limitations can be overcome by using chromatographic supports like membranes or monoliths. Dye-ligands are considered important alternatives to natural ligands. Several reactive dyes, particularly Cibacron Blue F3GA, are used as affinity ligand for protein purification. Cibacron Blue F3GA is a triazine dye that interacts specifically and reversibly with albumin. The aim of this study is to prepare dye-affinity membranes and monoliths for efficient removal of albumin and to compare the three different affinity supports: membranes and monoliths and a commercial column HiTrapTM Blue HP, produced by GE Healthcare. A comparison among the three supports was performed in terms of binding capacity at saturation (DBC100%) and dynamic binding capacity at 10% breakthrough (DBC10%) using solutions of pure BSA. The results obtained show that the CB-RC membranes and CB-Epoxy monoliths can be compared to commercial support, column HiTrapTM Blue HP, for the separation of albumin. These results encourage a further characterization of the new supports examined.
Resumo:
The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440–660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fv/Fm, a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery.
Resumo:
A maritime construction is usually a slender line in the ocean.It is usual to see just its narrow surface strip and not analyse the large amount of submerged material the latter is supporting.Without doubt,it is the ground to which a notable load is transmitted in an environment subjected to periodic,alternating stresses,dynamic forces which the sea's media constitute. Both an outer and inner maritime construction works in a complex fashion.A granular solid(breakwater)breathes with the incident wave flow,dissipating part of the wave energy between its gaps.The backflow tries to extract the different items from the solid block,setting a balance between effective and neutral tensions that follow Terzaghui's principle. On some occasions,fluidification of the armour layer has caused the breakwater to collapse(Sines,Portugal,February 1978).On others,siphoning or liquefaction of sand supporting monoliths(vertical breakwaters)lead them to destruction or collapse(New Barcelona Harbour Mouth,Spain,November 2001). This is why the ground-force-structure interaction is a complicated analysis with joint design tools still in an incipient state. The purpose of this article is to describe two singular failures in inner maritime constructions in Spain deriving from ground problems(Malaga,July 2004and Barcelona,January 2007).They occurred recently and the causes are the subject of reflection and analysis.
Resumo:
The effective mass Schrodinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band which are similar to those originated in quantum wires and quantum wells coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.
Resumo:
"Images of the decapitated, dismembered female warrior Coyolxauhqui, a main character in the Mexica mythology of Huitzilopochtli, figured prominently in Imperial Mexica sculptural campaigns at the Templo Mayor. However, monoliths of a terrifying, dismembered female from the shrine have traditionally been identified as Huitzilopochtli’s nurturing mother Coatlicue, or permutations of goddesses. Such studies do not adequately address why these sculptures depict mutilated beings whose characteristics are antithetical to Coatlicue’s appropriate female behavior depicted in myths and images"
Resumo:
This study describes the electrochemical characterization of N-doped carbon xerogels in the form of microspheres and of carbon aerogels with varied porosities and surface oxygen complexes. The interfacial capacitance of N-doped carbon xerogels decreased with increased micropore surface area as determined by N2 adsorption at −196 °C. The interfacial capacitance showed a good correlation with the areal NXPS concentration, and the best correlation with the areal concentration of pyrrolic or pyridonic nitrogen functionalities. The gravimetric capacitance decreased with greater xerogel microsphere diameter. The interfacial capacitance of carbon aerogels increased with higher percentage of porosity as determined from particle and true densities. The interfacial capacitance showed a linear relationship with the areal oxygen concentration and with the areal concentrations of CO- and CO2-evolving groups.
Resumo:
The immobilization of the chiral complex RhDuphos, by electrostatic or π–π (adsorption) interactions, on carbon nanotubes and carbon xerogels is investigated. To promote such interactions, the supports were either oxidized or heat treated to create carboxylic type surface groups or an apolar surface, respectively. The catalysts were tested in the hydrogenation of methyl 2-acetamidoacrylate. The prepared hybrid catalysts are less active than the homogeneous RhDuphos, but most of them show a high enantioselectivity and the one prepared with the oxidized carbon xerogel is also reusable, being able to give a high substrate conversion, keeping as well a high enantioselectivity. The anchorage by electrostatic interactions is more interesting than the anchorage by π–π interactions, as the π–π adsorption method produces a modification of the metal complex structure leading to an active hybrid catalyst but without enantioselectivity. The creation of carboxylic groups on the support surface has led to some hindering of the complex leaching.
Resumo:
A biomass derived carbon, a commercial microporous carbon and a xerogel mesoporous carbon catalysts were used in the study of α-pinene methoxilation reaction and the influence of textural and physical–chemical properties of the carbons was evaluated. Biomass carbon presented the higher activity, whereas the commercial one is the less active in the conditions studied. The main product of the reaction was α-terpinyl methyl ether and good values of selectivity were obtained over all the catalysts. A kinetic model was developed assuming that the α-pinene is consumed according to the parallel reaction network. The kinetic model presents high quality fittings to the experimental concentration profiles. These results show that it is possible to activate a waste residue using H3PO4 and convert it to high added value product such as acid catalyst.