896 resultados para parabolic-elliptic equation, inverse problems, factorization method
Resumo:
O uso de técnicas com o funcional de Tikhonov em processamento de imagens tem sido amplamente usado nos últimos anos. A ideia básica nesse processo é modificar uma imagem inicial via equação de convolução e encontrar um parâmetro que minimize esse funcional afim de obter uma aproximação da imagem original. Porém, um problema típico neste método consiste na seleção do parâmetro de regularização adequado para o compromisso entre a acurácia e a estabilidade da solução. Um método desenvolvido por pesquisadores do IPRJ e UFRJ, atuantes na área de problemas inversos, consiste em minimizar um funcional de resíduos através do parâmetro de regularização de Tikhonov. Uma estratégia que emprega a busca iterativa deste parâmetro visando obter um valor mínimo para o funcional na iteração seguinte foi adotada recentemente em um algoritmo serial de restauração. Porém, o custo computacional é um fator problema encontrado ao empregar o método iterativo de busca. Com esta abordagem, neste trabalho é feita uma implementação em linguagem C++ que emprega técnicas de computação paralela usando MPI (Message Passing Interface) para a estratégia de minimização do funcional com o método de busca iterativa, reduzindo assim, o tempo de execução requerido pelo algoritmo. Uma versão modificada do método de Jacobi é considerada em duas versões do algoritmo, uma serial e outra em paralelo. Este algoritmo é adequado para implementação paralela por não possuir dependências de dados como de Gauss-Seidel que também é mostrado a convergir. Como indicador de desempenho para avaliação do algoritmo de restauração, além das medidas tradicionais, uma nova métrica que se baseia em critérios subjetivos denominada IWMSE (Information Weighted Mean Square Error) é empregada. Essas métricas foram introduzidas no programa serial de processamento de imagens e permitem fazer a análise da restauração a cada passo de iteração. Os resultados obtidos através das duas versões possibilitou verificar a aceleração e a eficiência da implementação paralela. A método de paralelismo apresentou resultados satisfatórios em um menor tempo de processamento e com desempenho aceitável.
Resumo:
We present a new efficient numerical approach for representing anisotropic physical quantities and/or matrix elements defined on the Fermi surface (FS) of metallic materials. The method introduces a set of numerically calculated generalized orthonormal functions which are the solutions of the Helmholtz equation defined on the FS. Noteworthy, many properties of our proposed basis set are also shared by the FS harmonics introduced by Philip B Allen (1976 Phys. Rev. B 13 1416), proposed to be constructed as polynomials of the cartesian components of the electronic velocity. The main motivation of both approaches is identical, to handle anisotropic problems efficiently. However, in our approach the basis set is defined as the eigenfunctions of a differential operator and several desirable properties are introduced by construction. The method is demonstrated to be very robust in handling problems with any crystal structure or topology of the FS, and the periodicity of the reciprocal space is treated as a boundary condition for our Helmholtz equation. We illustrate the method by analysing the free-electron-like lithium (Li), sodium (Na), copper (Cu), lead (Pb), tungsten (W) and magnesium diboride (MgB2)
Resumo:
Um Estudo para a solução numérica do modelo de difusão com retenção, proposta por Bevilacqua et al. (2011), é apresentado, bem como uma formulação implícita para o problema inverso para a estimativa dos parâmetros envolvidos na formulação matemática do modelo. Através de um estudo minucioso da análise de sensibilidade e do cálculo do coeficiente de correlação de Pearson, são identificadas as chances de se obter sucesso na solução do problema inverso através do método determinístico de Levenberg-Marquardt e dos métodos estocásticos Algoritmo de Colisão de Partículas (Particle Collision Algorithm - PCA) e Evolução Diferencial (Differential Evolution - DE). São apresentados os resultados obtidos através destes três métodos de otimização para três casos de conjunto de parâmetros. Foi observada uma forte correlação entre dois destes três parâmetros, o que dificultou a estimativa simultânea dos mesmos. Porém, foi obtido sucesso nas estimativas individuais de cada parâmetro. Foram obtidos bons resultados para os fatores que multiplicam os termos diferenciais da equação que modela o fenômeno de difusão com retenção.
Resumo:
Um grande desafio da atualidade é a preservação dos recursos hídricos, bem como o correto manejo dos mesmos, frente à expansão das cidades e às atividades humanas. A qualidade de um corpo hídrico é usualmente avaliada através da análise de parâmetros biológicos, físicos e químicos. O comportamento de tais parâmetros pode convenientemente ser simulado através de modelos matemáticos e computacionais, que surgem assim como uma ferramenta bastante útil, por sua capacidade de geração de cenários que possam embasar, por exemplo, tomadas de decisão. Nesta tese são discutidas técnicas de estimação da localização e intensidade de uma fonte de contaminante conservativo, hipoteticamente lançado na região predominantemente fluvial de um estuário. O lançamento aqui considerado se dá de forma pontual e contínua e a região enfocada compreendeu o estuário do Rio Macaé, localizado na costa norte do Rio de Janeiro. O trabalho compreende a solução de um problema direto, que consiste no transporte bidimensional (integrado na vertical) desse contaminante hipotético, bem como a aplicação de técnicas de problemas inversos. Para a solução do transporte do contaminante, aqui modelada pela versão 2D horizontal da equação de advecção-difusão, foram utilizados como métodos de discretização o Método de Elementos Finitos e o Método de Diferenças Finitas. Para o problema hidrodinâmico foram utilizados dados de uma solução já desenvolvida para estuário do Rio Macaé. Analisada a malha de acordo com o método de discretização, foram definidas a geometria do estuário e os parâmetros hidrodinâmicos e de transporte. Para a estimação dos parâmetros propostos foi utilizada a técnica de problemas inversos, com o uso dos métodos Luus-Jaakola, Algoritmo de Colisão de Partículas e Otimização por Colônia de Formigas para a estimação da localização e do método Seção Áurea para a estimação do parâmetro de intensidade da fonte. Para a definição de uma fonte, com o objetivo de propor um cenário experimental idealizado e de coleta de dados de amostragem, foi realizada a análise de sensibilidade quanto aos parâmetros a serem estimados. Como os dados de amostragem de concentração foram sintéticos, o problema inverso foi resolvido utilizando-os com e sem ruído, esse introduzido de forma artificial e aleatória. Sem o uso de ruído, os três métodos mostraram-se igualmente eficientes, com uma estimação precisa em 95% das execuções. Já com o uso de dados de amostragem com ruídos de 5%, o método Luus-Jaakola mostrou-se mais eficiente em esforço e custo computacional, embora todos tenham estimado precisamente a fonte em 80% das execuções. Considerando os resultados alcançados neste trabalho tem-se que é possível estimar uma fonte de constituintes, quanto à sua localização e intensidade, através da técnica de problemas inversos. Além disso, os métodos aplicados mostraram-se eficientes na estimação de tais parâmetros, com estimações precisas para a maioria de suas execuções. Sendo assim, o estudo do comportamento de contaminantes, e principalmente da identificação de fontes externas, torna-se uma importante ferramenta para a gestão dos recursos hídricos, possibilitando, inclusive, a identificação de possíveis responsáveis por passivos ambientais.
Resumo:
In exploration geophysics,velocity analysis and migration methods except reverse time migration are based on ray theory or one-way wave-equation. So multiples are regarded as noise and required to be attenuated. It is very important to attenuate multiples for structure imaging, amplitude preserving migration. So it is an interesting research in theory and application about how to predict and attenuate internal multiples effectively. There are two methods based on wave-equation to predict internal multiples for pre-stack data. One is common focus point method. Another is inverse scattering series method. After comparison of the two methods, we found that there are four problems in common focus point method: 1. dependence of velocity model; 2. only internal multiples related to a layer can be predicted every time; 3. computing procedure is complex; 4. it is difficult to apply it in complex media. In order to overcome these problems, we adopt inverse scattering series method. However, inverse scattering series method also has some problems: 1. computing cost is high; 2. it is difficult to predict internal multiples in the far offset; 3. it is not able to predict internal multiples in complex media. Among those problems, high computing cost is the biggest barrier in field seismic processing. So I present 1D and 1.5D improved algorithms for reducing computing time. In addition, I proposed a new algorithm to solve the problem which exists in subtraction, especially for surface related to multiples. The creative results of my research are following: 1. derived an improved inverse scattering series prediction algorithm for 1D. The algorithm has very high computing efficiency. It is faster than old algorithm about twelve times in theory and faster about eighty times for lower spatial complexity in practice; 2. derived an improved inverse scattering series prediction algorithm for 1.5D. The new algorithm changes the computing domain from pseudo-depth wavenumber domain to TX domain for predicting multiples. The improved algorithm demonstrated that the approach has some merits such as higher computing efficiency, feasibility to many kinds of geometries, lower predictive noise and independence to wavelet; 3. proposed a new subtraction algorithm. The new subtraction algorithm is not used to overcome nonorthogonality, but utilize the nonorthogonality's distribution in TX domain to estimate the true wavelet with filtering method. The method has excellent effectiveness in model testing. Improved 1D and 1.5D inverse scattering series algorithms can predict internal multiples. After filtering and subtracting among seismic traces in a window time, internal multiples can be attenuated in some degree. The proposed 1D and 1.5D algorithms have demonstrated that they are effective to the numerical and field data. In addition, the new subtraction algorithm is effective to the complex theoretic models.
Resumo:
The processes of seismic wave propagation in phase space and one way wave extrapolation in frequency-space domain, if without dissipation, are essentially transformation under the action of one parameter Lie groups. Consequently, the numerical calculation methods of the propagation ought to be Lie group transformation too, which is known as Lie group method. After a fruitful study on the fast methods in matrix inversion, some of the Lie group methods in seismic numerical modeling and depth migration are presented here. Firstly the Lie group description and method of seismic wave propagation in phase space is proposed, which is, in other words, symplectic group description and method for seismic wave propagation, since symplectic group is a Lie subgroup and symplectic method is a special Lie group method. Under the frame of Hamiltonian, the propagation of seismic wave is a symplectic group transformation with one parameter and consequently, the numerical calculation methods of the propagation ought to be symplectic method. After discrete the wave field in time and phase space, many explicit, implicit and leap-frog symplectic schemes are deduced for numerical modeling. Compared to symplectic schemes, Finite difference (FD) method is an approximate of symplectic method. Consequently, explicit, implicit and leap-frog symplectic schemes and FD method are applied in the same conditions to get a wave field in constant velocity model, a synthetic model and Marmousi model. The result illustrates the potential power of the symplectic methods. As an application, symplectic method is employed to give synthetic seismic record of Qinghai foothills model. Another application is the development of Ray+symplectic reverse-time migration method. To make a reasonable balance between the computational efficiency and accuracy, we combine the multi-valued wave field & Green function algorithm with symplectic reverse time migration and thus develop a new ray+wave equation prestack depth migration method. Marmousi model data and Qinghai foothills model data are processed here. The result shows that our method is a better alternative to ray migration for complex structure imaging. Similarly, the extrapolation of one way wave in frequency-space domain is a Lie group transformation with one parameter Z and consequently, the numerical calculation methods of the extrapolation ought to be Lie group methods. After discrete the wave field in depth and space, the Lie group transformation has the form of matrix exponential and each approximation of it gives a Lie group algorithm. Though Pade symmetrical series approximation of matrix exponential gives a extrapolation method which is traditionally regarded as implicit FD migration, it benefits the theoretic and applying study of seismic imaging for it represent the depth extrapolation and migration method in a entirely different way. While, the technique of coordinates of second kind for the approximation of the matrix exponential begins a new way to develop migration operator. The inversion of matrix plays a vital role in the numerical migration method given by Pade symmetrical series approximation. The matrix has a Toepelitz structure with a helical boundary condition and is easy to inverse with LU decomposition. A efficient LU decomposition method is spectral factorization. That is, after the minimum phase correlative function of each array of matrix had be given by a spectral factorization method, all of the functions are arranged in a position according to its former location to get a lower triangular matrix. The major merit of LU decomposition with spectral factorization (SF Decomposition) is its efficiency in dealing with a large number of matrixes. After the setup of a table of the spectral factorization results of each array of matrix, the SF decomposition can give the lower triangular matrix by reading the table. However, the relationship among arrays is ignored in this method, which brings errors in decomposition method. Especially for numerical calculation in complex model, the errors is fatal. Direct elimination method can give the exact LU decomposition But even it is simplified in our case, the large number of decomposition cost unendurable computer time. A hybrid method is proposed here, which combines spectral factorization with direct elimination. Its decomposition errors is 10 times little than that of spectral factorization, and its decomposition speed is quite faster than that of direct elimination, especially in dealing with a large number of matrix. With the hybrid method, the 3D implicit migration can be expected to apply on real seismic data. Finally, the impulse response of 3D implicit migration operator is presented.
Resumo:
This paper, a 2-D non-linear electric arc-welding problem is considered. It is assumed that the moving arc generates an unknown quantity of energy which makes the problem an inverse problem with an unknown source. Robust algorithms to solve such problems e#ciently, and in certain circumstances in real-time, are of great technological and industrial interest. There are other types of inverse problems which involve inverse determination of heat conductivity or material properties [CDJ63][TE98], inverse problems in material cutting [ILPP98], and retrieval of parameters containing discontinuities [IK90]. As in the metal cutting problem, the temperature of a very hot surface is required and it relies on the use of thermocouples. Here, the solution scheme requires temperature measurements lied in the neighbourhood of the weld line in order to retrieve the unknown heat source. The size of this neighbourhood is not considered in this paper, but rather a domain decomposition concept is presented and an examination of the accuracy of the retrieved source are presented. This paper is organised as follows. The inverse problem is formulated and a method for the source retrieval is presented in the second section. The source retrieval method is based on an extension of the 1-D source retrieval method as proposed in [ILP].
Resumo:
An immense variety of problems in theoretical physics are of the non-linear type. Non~linear partial differential equations (NPDE) have almost become the rule rather than an exception in diverse branches of physics such as fluid mechanics, field theory, particle physics, statistical physics and optics, and the construction of exact solutions of these equations constitutes one of the most vigorous activities in theoretical physics today. The thesis entitled ‘Some Non-linear Problems in Theoretical Physics’ addresses various aspects of this problem at the classical level. For obtaining exact solutions we have used mathematical tools like the bilinear operator method, base equation technique and similarity method with emphasis on its group theoretical aspects. The thesis deals with certain methods of finding exact solutions of a number of non-linear partial differential equations of importance to theoretical physics. Some of these new solutions are of relevance from the applications point of view in diverse branches such as elementary particle physics, field theory, solid state physics and non-linear optics and give some insight into the stable or unstable behavior of dynamical Systems The thesis consists of six chapters.
Resumo:
The aim of this paper is to extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the Laplace equation in two dimensions using approximate approximations. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A ‘range test’ for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533–547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhäuser, Basel, 1986, pp. 93–102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Göttingen, 1999]. In particular, we propose a new version of the Kirsch–Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.
Resumo:
We use the point-source method (PSM) to reconstruct a scattered field from its associated far field pattern. The reconstruction scheme is described and numerical results are presented for three-dimensional acoustic and electromagnetic scattering problems. We give new proofs of the algorithms, based on the Green and Stratton-Chu formulae, which are more general than with the former use of the reciprocity relation. This allows us to handle the case of limited aperture data and arbitrary incident fields. Both for 3D acoustics and electromagnetics, numerical reconstructions of the field for different settings and with noisy data are shown. For shape reconstruction in acoustics, we develop an appropriate strategy to identify areas with good reconstruction quality and combine different such regions into one joint function. Then, we show how shapes of unknown sound-soft scatterers are found as level curves of the total reconstructed field.
Resumo:
We discuss the implementation of a method of solving initial boundary value problems in the case of integrable evolution equations in a time-dependent domain. This method is applied to a dispersive linear evolution equation with spatial derivatives of arbitrary order and to the defocusing nonlinear Schrödinger equation, in the domain l(t)
Resumo:
We consider four-dimensional variational data assimilation (4DVar) and show that it can be interpreted as Tikhonov or L2-regularisation, a widely used method for solving ill-posed inverse problems. It is known from image restoration and geophysical problems that an alternative regularisation, namely L1-norm regularisation, recovers sharp edges better than L2-norm regularisation. We apply this idea to 4DVar for problems where shocks and model error are present and give two examples which show that L1-norm regularisation performs much better than the standard L2-norm regularisation in 4DVar.
Resumo:
In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.
Resumo:
We introduce a new algorithm for source identification and field splitting based on the point source method (Potthast 1998 A point-source method for inverse acoustic and electromagnetic obstacle scattering problems IMA J. Appl. Math. 61 119–40, Potthast R 1996 A fast new method to solve inverse scattering problems Inverse Problems 12 731–42). The task is to separate the sound fields uj, j = 1, ..., n of sound sources supported in different bounded domains G1, ..., Gn in from measurements of the field on some microphone array—mathematically speaking from the knowledge of the sum of the fields u = u1 + + un on some open subset Λ of a plane. The main idea of the scheme is to calculate filter functions , to construct uℓ for ℓ = 1, ..., n from u|Λ in the form We will provide the complete mathematical theory for the field splitting via the point source method. In particular, we describe uniqueness, solvability of the problem and convergence and stability of the algorithm. In the second part we describe the practical realization of the splitting for real data measurements carried out at the Institute for Sound and Vibration Research at Southampton, UK. A practical demonstration of the original recording and the splitting results for real data is available online.