898 resultados para paleo drought
Resumo:
The Amazon Basin is crucial to global circulatory and carbon patterns due to the large areal extent and large flux magnitude. Biogeophysical models have had difficulty reproducing the annual cycle of net ecosystem exchange (NEE) of carbon in some regions of the Amazon, generally simulating uptake during the wet season and efflux during seasonal drought. In reality, the opposite occurs. Observational and modeling studies have identified several mechanisms that explain the observed annual cycle, including: (1) deep soil columns that can store large water amount, (2) the ability of deep roots to access moisture at depth when near-surface soil dries during annual drought, (3) movement of water in the soil via hydraulic redistribution, allowing for more efficient uptake of water during the wet season, and moistening of near-surface soil during the annual drought, and (4) photosynthetic response to elevated light levels as cloudiness decreases during the dry season. We incorporate these mechanisms into the third version of the Simple Biosphere model (SiB3) both singly and collectively, and confront the results with observations. For the forest to maintain function through seasonal drought, there must be sufficient water storage in the soil to sustain transpiration through the dry season in addition to the ability of the roots to access the stored water. We find that individually, none of these mechanisms by themselves produces a simulation of the annual cycle of NEE that matches the observed. When these mechanisms are combined into the model, NEE follows the general trend of the observations, showing efflux during the wet season and uptake during seasonal drought.
Resumo:
Model Predictive Control (MPC) is a control method that solves in real time an optimal control problem over a finite horizon. The finiteness of the horizon is both the reason of MPC's success and its main limitation. In operational water resources management, MPC has been in fact successfully employed for controlling systems with a relatively short memory, such as canals, where the horizon length is not an issue. For reservoirs, which have generally a longer memory, MPC applications are presently limited to short term management only. Short term reservoir management can be effectively used to deal with fast process, such as floods, but it is not capable of looking sufficiently ahead to handle long term issues, such as drought. To overcome this limitation, we propose an Infinite Horizon MPC (IH-MPC) solution that is particularly suitable for reservoir management. We propose to structure the input signal by use of orthogonal basis functions, therefore reducing the optimization argument to a finite number of variables, and making the control problem solvable in a reasonable time. We applied this solution for the management of the Manantali Reservoir. Manantali is a yearly reservoir located in Mali, on the Senegal river, affecting water systems of Mali, Senegal, and Mauritania. The long term horizon offered by IH-MPC is necessary to deal with the strongly seasonal climate of the region.
Resumo:
Silicon has beneficial effects on many crops, mainly under biotic and abiotic stresses. Silicon can affect biochemical, physiological, and photosynthetic processes and, consequently, alleviates drought stress. However, the effects of Si on potato (Solanum tuberosum L.) plants under drought stress are still unknown. The objective of this study was to evaluate the effect of Si supply on some biochemical characteristics and yield of potato tubers, either exposed or not exposed to drought stress. The experiment was conducted in pots containing 50 dm(3) of a Typic Acrortox soil (33% clay, 4% silt, and 63% sand). The treatments consisted of the absence or presence of Si application (0 and 284.4 mg dm(-3)), through soil amelioration with dolomitic lime and Ca and Mg silicate, and in the absence or presence of water deficit (-0.020 MPa and -0.050 MPa soil water potential, respectively), with eight replications. Silicon application and water deficit resulted in the greatest Si concentration in potato leaves. Proline concentrations increased under lower water availability and higher Si availability in the soil, which indicates that Si may be associated with plant osmotic adjustment. Water deficit and Si application decreased total sugars and soluble proteins concentrations in the leaves. Silicon application reduced stalk lodging and increased mean tuber weight and, consequently, tuber yield, especially in the absence of water stress.
Resumo:
center dot Background and Aims Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits.center dot Methods Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (Psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, Psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed.center dot Key Results and Conclusions With irrigation, plant hydraulic conductance (K-L), midday Psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn Psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining Psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, Psi(x), g(s) and KL recovered rapidly following re-watering. Differences in root depth, KL and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effect of thiamethoxam on germination of soybean (Glycine max L.) seeds cv. Pintado under water deficit was studied. When used as insecticide at the recommended level (100/100 kg seeds) in the treatment of soybean seeds. thiamethoxam accelerated germination. Soybean germination was delayed under lower water availability: however pretreatment of seeds with thiamethoxam reduced the negative effects of water deficit on such process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A review of recent literature shows that most taphonomic studies of Holocene and fossil macrovertebrates are not methodologically standardized. Hence, results from distinct studies are not comparable, even among researches sharing virtually identical goals, targeting the same biological group of similar age and depositional environment. The effects of the shell size in the taphonomic analysis are still poorly understood. In order to study this issue, the taphonomic signatures (articulation, valve type, fragmentation, abrasion, corrosion, edge modification, color alteration, bioerosion and encrustation) of brachiopod shells (Bouchardia rosea (Mawe)), from Ubatuba Bay in the northern coast of São Paulo State, were investigated according to the sieve sizes. In the study area, 14 collecting stations were sampled via Van Veen grab sampler, along a bathymetric gradient, ranging from 0 to 35 m of depth. Bulk samples were sieved through 8 mm, 6 mm, and 2 mm mesh sizes, yielding a total of 5.204 shells. The results indicate that, when taphonomic signatures were independently analyzed per size classes (8 mm, 6 mm, and 2 mm), the taphonomic signatures are recorded in a complex and random way. Additionally, cluster analysis showed that the similarity among the clusters vary according to the considered sieve size. Thus, the sieve size plays an important role in the distribution of taphonomic signatures in shells of distinct sizes. These results suggest that the concentration of the taphonomic analysis on one class (e.g., the largest sieve size, 8 mm) is not always the best method. Rather, the total data (all sieves included) seems more accurate in recording the whole spectrum of taphonomic processes recorded in shells of a given assemblage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi validar, pela técnica de PCR quantitativo em tempo real (RT-qPCR) genes para serem utilizados como referência em estudos de expressão gênica em soja, em ensaios de estresse hídrico. Foram avaliados quatro genes comumente utilizados em soja: Gmβ-actin, GmGAPDH, GmLectin e GmRNAr18S. O RNA total foi extraído de seis amostras: três amostras de raízes em sistema de hidroponia com diferentes intensidades de déficit hídrico (0, 25, 50, 75 e 100 minutos de estresse hídrico), e três amostras de folhas de plantas cultivadas em areia com diferentes umidades do solo (15, 5 e 2,5% de umidade gravimétrica). Os dados brutos do intervalo cycle threshold (Ct) foram analisados, e a eficiência de cada iniciador foi calculada para uma analise da Ct entre as diferentes amostras. A aplicação do programa GeNorm foi utilizada para a avaliação dos melhores genes de referência, de acordo com a estabilidade. O GmGAPDH foi o gene menos estável, com o maior valor médio de estabilidade de expressão (M), e os genes mais estáveis, com menor valor de M, foram o Gmβ-actin e GmRNAr18S, tanto nas amostras de raízes como nas de folhas. Estes genes podem ser usados em RT-qPCR como gens de referência para análises de expressão gênica.
Resumo:
In 1997, the Amazon Basin experienced an exceptionally severe El Nino drought. We assessed effects of this rare event on mortality rates of trees in intact rainforest based on data from permanent plots. Long-term (5- to 13-year) mortality rates averaged only 1.12% per year prior to the drought. During the drought year, annual mortality jumped to 1.91% but abruptly fell back to 1.23% in the year following El Nino. Trees dying during the drought dirt not differ significantly in site or species composition from those that died previously, and there was no detectable effect of soil texture on mortality rates. These results suggest that intact Amazonian rainforests are relatively resistant to severe El Nino events.
Resumo:
Although drought and defoliation stress have been shown to reduce soybean [Glycine max (L.). Merr.] yield, little information has been published regarding their effects on soybean seed quality. Field experiments were conducted in 1986, 1987, and 1989 to evaluate the effect of drought and defoliation (1989 only) stress during soybean seed development on seed germination and vigor. Essex (MG [maturity group] V) and Union (MG III) were grown in 1986 and 1987, and Harper (MG III) and McCall (MG 00) in 1989. Moisture treatments were either well watered or drought stressed during seed development (R5 to R7). In 1989, a total defoliation treatment was also imposed at R6 as an additional stress factor. There were significant reductions in yield and yield components following drought stress in all 3 yr and following defoliation in 1989. Leaf conductance and transpiration also decreased in the drought stress treatments. There was no effect of drought stress on seed germination or seed vigor as measured by accelerated aging germination and the cold test across the four cultivars (determinate and indeterminate) and 3 yr. In 1989 slight changes in 3-d germination and conductivity occurred for some drought stress treatments. Most of this response, however, was related to increased occurrence of hard seed, which does not represent an indication of a change in vigor. Seed germination and vigor were significantly reduced for small, flat, shriveled, and underdeveloped seeds that only occurred following defoliation. These seeds represented a small portion of the seed lot that would normally be removed during conditioning. The data suggest that drought stress would have no effect on seed germination or vigor, unless the stress was severe enough to produce shriveled, flat, underdeveloped seeds.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We compared tolerance to soil drought of two field-grown clones of Coffea canephora (clone 46, drought-sensitive; and clone 120, drought-tolerant). Under irrigation, there were no marked differences between the clones in water relation parameters, gas exchange and total leaf area. Under rainfed conditions, clone 46 showed osmotic adjustment and increased tissue rigidity. These adjustments, however, were incapable of preventing substantial decreases in xylem pressure potential. By contrast, clone 120 did not exhibit osmotic adjustment, but was able to increase tissue elasticity and to maintain xylem pressure potentials to a greater extent than clone 46 (despite having twice the total leaf area of this clone). Stomatal conductance was lowered by drought in clone 120 but not in clone 46. Carbon assimilation per unit leaf area in both clones remained unaffected under stress. Long-term water use efficiency (WUE), as estimated through carbon isotope discrimination, was consistently greater in clone 120 than in clone 46. Because of these traits, clone 120 was better able to postpone dehydration and to maintain whole-tree photosynthesis. It is proposed that these features should decisively contribute to buffer its productivity in drought-prone areas. © 2002 Elsevier Science Ireland Ltd. All rights reserved.