894 resultados para pacs: metropolian area networks
Resumo:
The demand for high-speed optical links within local-area networks and storage-area networks continues to grow rapidly, with standards under development that demand single-wavelength solutions at data rates of 30 Gb/s and beyond. Robust low-cost schemes are required, with a particular emphasis on multimode-fibre links using optical transceivers based on vertical-cavity surface-emitting lasers. © 2012 IEEE.
Resumo:
A methodology for improved power controller switching in mobile Body Area Networks operating within the ambient healthcare environment is proposed. The work extends Anti-windup and Bumpless transfer results to provide a solution to the ambulatory networking problem that ensures sufficient biometric data can always be regenerated at the base station. The solution thereby guarantees satisfactory quality of service for healthcare providers. Compensation is provided for the nonlinear hardware constraints that are a typical feature of the type of network under consideration and graceful performance degradation in the face of hardware output power saturation is demonstrated, thus conserving network energy in an optimal fashion.
Resumo:
Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band.
Resumo:
Recent popularity of the IEEE 802.11b Wireless Local Area Networks (WLANs) in a host of current-day applications has instigated a suite of research challenges. The 802.11b WLANs are highly reliable and wide spread. In this work, we study the temporal characteristics of RSSI in the real-working environment by conducting a controlled set of experiments. Our results indicate that a significant variability in the RSSI can occur over time. Some of this variability in the RSSI may be due to systematic causes while the other component can be expressed as stochastic noise. We present an analysis of both these aspects of RSSI. We treat the moving average of the RSSI as the systematic causes and the noise as the stochastic causes. We give a reasonable estimate for the moving average to compute the noise accurately. We attribute the changes in the environment such as the movement of people and the noise associated with the NIC circuitry and the network access point as causes for this variability. We find that the results of our analysis are of primary importance to active research areas such as location determination of users in a WLAN. The techniques used in some of the RF-based WLAN location determination systems, exploit the characteristics of the RSSI presented in this work to infer the location of a wireless client in a WLAN. Thus our results form the building blocks for other users of the exact characteristics of the RSSI.
Resumo:
Wireless enabled portable devices must operate with the highest possible energy efficiency while still maintaining a minimum level and quality of service to meet the user's expectations. The authors analyse the performance of a new pointer-based medium access control protocol that was designed to significantly improve the energy efficiency of user terminals in wireless local area networks. The new protocol, pointer controlled slot allocation and resynchronisation protocol (PCSAR), is based on the existing IEEE 802.11 point coordination function (PCF) standard. PCSAR reduces energy consumption by removing the need for power saving stations to remain awake and listen to the channel. Using OPNET, simulations were performed under symmetric channel loading conditions to compare the performance of PCSAR with the infrastructure power saving mode of IEEE 802.11, PCF-PS. The simulation results demonstrate a significant improvement in energy efficiency without significant reduction in performance when using PCSAR. For a wireless network consisting of an access point and 8 stations in power saving mode, the energy saving was up to 31% while using PCSAR instead of PCF-PS, depending upon frame error rate and load. The results also show that PCSAR offers significantly reduced uplink access delay over PCF-PS while modestly improving uplink throughput.
Resumo:
Modeling of on-body propagation channels is of paramount importance to those wishing to evaluate radio channel performance for wearable devices in body area networks (BANs). Difficulties in modeling arise due to the highly variable channel conditions related to changes in the user's state and local environment. This study characterizes these influences by using time-series analysis to examine and model signal characteristics for on-body radio channels in user stationary and mobile scenarios in four different locations: anechoic chamber, open office area, hallway, and outdoor environment. Autocorrelation and cross-correlation functions are reported and shown to be dependent on body state and surroundings. Autoregressive (AR) transfer functions are used to perform time-series analysis and develop models for fading in various on-body links. Due to the non-Gaussian nature of the logarithmically transformed observed signal envelope in the majority of mobile user states, a simple method for reproducing the failing based on lognormal and Nakagami statistics is proposed. The validity of the AR models is evaluated using hypothesis testing, which is based on the Ljung-Box statistic, and the estimated distributional parameters of the simulator output compared with those from experimental results.
Resumo:
For the first time in the open literature we present a full characterization of the performance of receiver diversity for the on-body channels found in body area networks. The study involved three commonly encountered diversity combining schemes: selection combination (SC), maximal ratio combining (MRC) and equal gain combining (EGC). Measurements were conducted for both stationary and mobile user scenarios in an anechoic chamber and open office area environment. Achievable diversity gain for various on-body dual branch diversity receivers, consisting of horizontal and vertical spatially separated antennas, was found to be dependent upon transmitter-receive array separation, user state and level of multipath contribution from the local environment. The maximum diversity gain (6.4 dB) was observed for a horizontal two branch MRC combiner while the transmitter and receiver were on opposite sides of the body, and the user was mobile in the open office area. A novel statistical characterization of the fading experienced in on-body diversity channels is also performed using purposely derived first and second order diversity statistics for combiners operating in Nakagami fading.
Resumo:
The ability to switch between propagating modes is important for body-centric applications such as medical body area networks where a single node may need to be able to optimise communications for either on-body sensor links or off-body links to the wider network. Therefore, we present a compact 2.45 GHz active mode-switching wearable antenna for both on-body and off-body wireless communications. The single-layer patch antenna was pattern-switched using shorting pins and had an impedance bandwidth of 253 MHz and 217 MHz for the on-body and off-body radiating modes, respectively. An efficiency of 57 % and 56.8 % was obtained for on-body and off-body mode respectively when placed in close proximity to a phantom that represents a muscle issue at 2.45 GHz.
Resumo:
In ultra-low data rate wireless sensor networks (WSNs) waking up just to listen to a beacon every superframe can be a major waste of energy. This study introduces MedMAC, a medium access protocol for ultra-low data rate WSNs that achieves significant energy efficiency through a novel synchronisation mechanism. The new draft IEEE 802.15.6 standard for body area networks includes a sub-class of applications such as medical implantable devices and long-term micro miniature sensors with ultra-low power requirements. It will be desirable for these devices to have 10 years or more of operation between battery changes, or to have average current requirements matched to energy harvesting technology. Simulation results are presented to show that the MedMAC allows nodes to maintain synchronisation to the network while sleeping through many beacons with a significant increase in energy efficiency during periods of particularly low data transfer. Results from a comparative analysis of MedMAC and IEEE 802.15.6 MAC show that MedMAC has superior efficiency with energy savings of between 25 and 87 for the presented scenarios. © 2011 The Institution of Engineering and Technology.
Understanding and exploiting physical layer characteristics to create new opportunities for bodynets
Resumo:
The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications. Key Points Channel models for body centric comms ©2014. The Authors.