975 resultados para packet loss burstiness


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The user experience on watching live video se- quences transmitted over a Flying Ad-Hoc Networks (FANETs) must be considered to drop packets in overloaded queues, in scenarios with high buffer overflow and packet loss rate. In this paper, we introduce a context-aware adaptation mechanism to manage overloaded buffers. More specifically, we propose a utility function to compute the dropping probability of each packet in overloaded queues based on video context information, such as frame importance, packet deadline, and sensing relevance. In this way, the proposed mechanism drops the packet that adds the minimum video distortion. Simulation evaluation shows that the proposed adaptation mechanism provides real-time multimedia dissemination with QoE support in a multi-hop, multi-flow, and mobile network environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing interest in autonomous coordinated driving and in proactive safety services, exploiting the wealth of sensing and computing resources which are gradually permeating the urban and vehicular environments, is making provisioning of high levels of QoS in vehicular networks an urgent issue. At the same time, the spreading model of a smart car, with a wealth of infotainment applications, calls for architectures for vehicular communications capable of supporting traffic with a diverse set of performance requirements. So far efforts focused on enabling a single specific QoS level. But the issues of how to support traffic with tight QoS requirements (no packet loss, and delays inferior to 1ms), and of designing a system capable at the same time of efficiently sustaining such traffic together with traffic from infotainment applications, are still open. In this paper we present the approach taken by the CONTACT project to tackle these issues. The goal of the project is to investigate how a VANET architecture, which integrates content-centric networking, software-defined networking, and context aware floating content schemes, can properly support the very diverse set of applications and services currently envisioned for the vehicular environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Cloud nodes that can interoperate together. We have chosen to represent the P2P nodes as Planet Lab machines over the world and the cloud nodes using a Cloud provider's network. First we present an experimental validation of the Cloud infrastructure's ability to distribute streaming sessions with respect to some key streaming QoS parameters: jitter, throughput and packet losses. Next we show the results obtained from different test scenarios, when a hybrid distribution network is used. The scenarios measure the improvement of the multimedia QoS parameters, when nodes in the streaming distribution network (located in different continents) are gradually moved into the Cloud provider infrastructure. The overall conclusion is that the QoS of a streaming service can be efficiently improved, unlike in traditional P2P systems and CDN, by deploying a hybrid streaming architecture. This enhancement can be obtained by strategic placing of certain distribution network nodes into the Cloud provider infrastructure, taking advantage of the reduced packet loss and low latency that exists among its datacenters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este proyecto muestra una solución de red para una empresa que presta servicios de Contact Center desde distintas sedes distribuidas geográficamente, utilizando la tecnología de telefonía sobre IP. El objetivo de este proyecto es el de convertirse en una guía de diseño para el despliegue de soluciones de red utilizando los actuales equipos de comunicaciones desarrollados por el fabricante Cisco Systems, Inc., los equipos de seguridad desarrollados por el fabricante Fortinet y los sistemas de telefonía desarrollados por Avaya Inc. y Oracle Corporation, debido a su gran penetración en el mercado y a las aportaciones que cada uno ha realizado en el sector de Contact Center. Para poder proveer interconexión entre las sedes de un Contact Center se procede a la contratación de un acceso a la red MPLS perteneciente a un operador de telecomunicaciones, quien provee conectividad entre las sedes utilizando la tecnología VPN MPLS con dos accesos diversificados entre sí desde cada una de las sedes del Contact Center. El resultado de esta contratación es el aprovechamiento de las ventajas que un operador de telecomunicaciones puede ofrecer a sus clientes, en relación a calidad de servicio, disponibilidad y expansión geográfica. De la misma manera, se definen una serie de criterios o niveles de servicio que aseguran a un Contact Center una comunicación de calidad entre sus sedes, entendiéndose por comunicación de calidad aquella que sea capaz de transmitirse con unos valores mínimos de pérdida de paquetes así como retraso en la transmisión, y una velocidad acorde a la demanda de los servicios de voz y datos. Como parte de la solución, se diseña una conexión redundante a Internet que proporciona acceso a todas las sedes del Contact Center. La solución de conectividad local en cada una de las sedes de un Contact Center se ha diseñado de manera general acorde al volumen de puestos de usuarios y escalabilidad que pueda tener cada una de las sedes. De esta manera se muestran varias opciones asociadas al equipamiento actual que ofrece el fabricante Cisco Systems, Inc.. Como parte de la solución se han definido los criterios de calidad para la elección de los Centros de Datos (Data Center). Un Contact Center tiene conexiones hacia o desde las empresas cliente a las que da servicio y provee de acceso a la red a sus tele-trabajadores. Este requerimiento junto con el acceso y servicios publicados en Internet necesita una infraestructura de seguridad. Este hecho da lugar al diseño de una solución que unifica todas las conexiones bajo una única infraestructura, dividiendo de manera lógica o virtual cada uno de los servicios. De la misma manera, se ha definido la utilización de protocolos como 802.1X para evitar accesos no autorizados a la red del Contact Center. La solución de voz elegida es heterogénea y capaz de soportar los protocolos de señalización más conocidos (SIP y H.323). De esta manera se busca tener la máxima flexibilidad para establecer enlaces de voz sobre IP (Trunk IP) con proveedores y clientes. Esto se logra gracias a la utilización de SBCs y a una infraestructura interna de voz basada en el fabricante Avaya Inc. Los sistemas de VoIP en un Contact Center son los elementos clave para poder realizar la prestación del servicio; por esta razón se elige una solución redundada bajo un entorno virtual. Esta solución permite desplegar el sistema de VoIP desde cualquiera de los Data Center del Contact Center. La solución llevada a cabo en este proyecto está principalmente basada en mi experiencia laboral adquirida durante los últimos siete años en el departamento de comunicaciones de una empresa de Contact Center. He tenido en cuenta los principales requerimientos que exigen hoy en día la mayor parte de empresas que desean contratar un servicio de Contact Center. Este proyecto está dividido en cuatro capítulos. El primer capítulo es una introducción donde se explican los principales escenarios de negocio y áreas técnicas necesarias para la prestación de servicios de Contact Center. El segundo capítulo describe de manera resumida, las principales tecnologías y protocolos que serán utilizados para llevar a cabo el diseño de la solución técnica de creación de una red de comunicaciones para una empresa de Contact Center. En el tercer capítulo se expone la solución técnica necesaria para permitir que una empresa de Contact Center preste sus servicios desde distintas ubicaciones distribuidas geográficamente, utilizando dos Data Centers donde se centralizan las aplicaciones de voz y datos. Finalmente, en el cuarto capítulo se presentan las conclusiones obtenidas tras la elaboración de la presente memoria, así como una propuesta de trabajos futuros, que permitirían junto con el proyecto actual, realizar una solución técnica completa incluyendo otras áreas tecnológicas necesarias en una empresa de Contact Center. Todas las ilustraciones y tablas de este proyecto son de elaboración propia a partir de mi experiencia profesional y de la información obtenida en diversos formatos de la bibliografía consultada, excepto en los casos en los que la fuente es mencionada. ABSTRACT This project shows a network solution for a company that provides Contact Center services from different locations geographically distributed, using the Telephone over Internet Protocol (ToIP) technology. The goal of this project is to become a design guide for performing network solutions using current communications equipment developed by the manufacturer Cisco Systems, Inc., firewalls developed by the manufacturer Fortinet and telephone systems developed by Avaya Inc. and Oracle Corporation, due to their great market reputation and their contributions that each one has made in the field of Contact Center. In order to provide interconnection between its different sites, the Contact Center needs to hire the services of a telecommunications’ operator, who will use the VPN MPLS technology, with two diversified access from each Contact Center’s site. The result of this hiring is the advantage of the benefits that a telecommunications operator can offer to its customers, regarding quality of service, availability and geographical expansion. Likewise, Service Level Agreement (SLA) has to be defined to ensure the Contact Center quality communication between their sites. A quality communication is understood as a communication that is capable of being transmitted with minimum values of packet loss and transmission delays, and a speed according to the demand for its voice and data services. As part of the solution, a redundant Internet connection has to be designed to provide access to every Contact Center’s site. The local connectivity solution in each of the Contact Center’s sites has to be designed according to its volume of users and scalability that each one may have. Thereby, the manufacturer Cisco Systems, Inc. offers several options associated with the current equipment. As part of the solution, quality criteria are being defined for the choice of the Data Centers. A Contact Center has connections to/from the client companies that provide network access to teleworkers. This requires along the access and services published on the Internet, needs a security infrastructure. Therefore is been created a solution design that unifies all connections under a single infrastructure, dividing each services in a virtual way. Likewise, is been defined the use of protocols, such as 802.1X, to prevent unauthorized access to the Contact Center’s network. The voice solution chosen is heterogeneous and capable of supporting best-known signaling protocols (SIP and H.323) in order to have maximum flexibility to establish links of Voice over IP (IP Trunk) with suppliers and clients. This can be achieved through the use of SBC and an internal voice infrastructure based on Avaya Inc. The VoIP systems in a Contact Center are the key elements to be able to provide the service; for this reason a redundant solution under virtual environment is been chosen. This solution allows any of the Data Centers to deploy the VoIP system. The solution carried out in this project is mainly based on my own experience acquired during the past seven years in the communications department of a Contact Center company. I have taken into account the main requirements that most companies request nowadays when they hire a Contact Center service. This project is divided into four chapters. The first chapter is an introduction that explains the main business scenarios and technical areas required to provide Contact Center services. The second chapter describes briefly the key technologies and protocols that will be used to carry out the design of the technical solution for the creation of a communications network in a Contact Center company. The third chapter shows a technical solution required that allows a Contact Center company to provide services from across geographically distributed locations, using two Data Centers where data and voice applications are centralized. Lastly, the fourth chapter includes the conclusions gained after making this project, as well as a future projects proposal, which would allow along the current project, to perform a whole technical solution including other necessary technologic areas in a Contact Center company All illustrations and tables of this project have been made by myself from my professional experience and the information obtained in various formats of the bibliography, except in the cases where the source is indicated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The energy demand for operating Information and Communication Technology (ICT) systems has been growing, implying in high operational costs and consequent increase of carbon emissions. Both in datacenters and telecom infrastructures, the networks represent a significant amount of energy spending. Given that, there is an increased demand for energy eficiency solutions, and several capabilities to save energy have been proposed. However, it is very dificult to orchestrate such energy eficiency capabilities, i.e., coordinate or combine them in the same network, ensuring a conflict-free operation and choosing the best one for a given scenario, ensuring that a capability not suited to the current bandwidth utilization will not be applied and lead to congestion or packet loss. Also, there is no way in the literature to do this taking business directives into account. In this regard, a method able to orchestrate diferent energy eficiency capabilities is proposed considering the possible combinations and conflicts among them, as well as the best option for a given bandwidth utilization and network characteristics. In the proposed method, the business policies specified in a high-level interface are refined down to the network level in order to bring highlevel directives into the operation, and a Utility Function is used to combine energy eficiency and performance requirements. A Decision Tree able to determine what to do in each scenario is deployed in a Software Defined Network environment. The proposed method was validated with diferent experiments, testing the Utility Function, checking the extra savings when combining several capabilities, the decision tree interpolation and dynamicity aspects. The orchestration proved to be valid to solve the problem of finding the best combination for a given scenario, achieving additional savings due to the combination, besides ensuring a conflict-free operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have designed and tested an Internet-based video-phone suitable for use in the homes of families in need of paediatric palliative care services. The equipment uses an ordinary telephone line and includes a PC, Web camera and modem housed in a custom-made box. In initial field testing, six clinical consultations were conducted in a one-month trial of the videophone with a family in receipt of palliative care services who were living in the outer suburbs of Brisbane. Problems with variability in call quality-namely audio and video freezing, and audio break-up-prompted further laboratory testing. We completed a programme of over 250 test calls. Fixing modem connection parameters to use the V.34 modulation protocol at a set bandwidth of 24 kbit/s improved connection stability and the reliability of the video-phone. In subsequent field testing 47 of 50 calls (94%) connected without problems. The freezes that did occur were brief (with greatly reduced packet loss) and had little effect on the ability to communicate, unlike the problems arising in the home testing. The low-bandwidth Internet-based video-phone we have developed provides a feasible means of doing telemedicine in the home.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead ofbeing another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. There are many kinds of protocols that work over WMNs, such as IEEE 802.11a/b/g, 802.15 and 802.16. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. While transmission rate is a significant part, only a few algorithms such as Auto Rate Fallback (ARF) or Receiver Based Auto Rate (RBAR) have been published. In this paper we will show MAC, packet loss and physical layer conditions play important role for having good channel condition. Also we perform rate adaption along with multiple packet transmission for better throughput. By allowing for dynamically monitored, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria improvements in performance can be obtained. The proposed method is the detection of channel congestion by measuring the fluctuation of signal to the standard deviation of and the detection of packet loss before channel performance diminishes. We will show that the use of such techniques in WMN can significantly improve performance. The effectiveness of the proposed method is presented in an experimental wireless network testbed via packet-level simulation. Our simulation results show that regardless of the channel condition we were to improve the performance in the throughput.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The contributions in this research are split in to three distinct, but related, areas. The focus of the work is based on improving the efficiency of video content distribution in the networks that are liable to packet loss, such as the Internet. Initially, the benefits and limitations of content distribution using Forward Error Correction (FEC) in conjunction with the Transmission Control Protocol (TCP) is presented. Since added FEC can be used to reduce the number of retransmissions, the requirement for TCP to deal with any losses is greatly reduced. When real-time applications are needed, delay must be kept to a minimum, and retransmissions not desirable. A balance, therefore, between additional bandwidth and delays due to retransmissions must be struck. This is followed by the proposal of a hybrid transport, specifically for H.264 encoded video, as a compromise between the delay-prone TCP and the loss-prone UDP. It is argued that the playback quality at the receiver often need not be 100% perfect, providing a certain level is assured. Reliable TCP is used to transmit and guarantee delivery of the most important packets. The delay associated with the proposal is measured, and the potential for use as an alternative to the conventional methods of transporting video by either TCP or UDP alone is demonstrated. Finally, a new objective measurement is investigated for assessing the playback quality of video transported using TCP. A new metric is defined to characterise the quality of playback in terms of its continuity. Using packet traces generated from real TCP connections in a lossy environment, simulating the playback of a video is possible, whilst monitoring buffer behaviour to calculate pause intensity values. Subjective tests are conducted to verify the effectiveness of the metric introduced and show that the results of objective and subjective scores made are closely correlated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motivated by the increasing demand and challenges of video streaming in this thesis, we investigate methods by which the quality of the video can be improved. We utilise overlay networks that have been created by implemented relay nodes to produce path diversity, and show through analytical and simulation models for which environments path diversity can improve the packet loss probability. We take the simulation and analytical models further by implementing a real overlay network on top of Planetlab, and show that when the network conditions remain constant the video quality received by the client can be improved. In addition, we show that in the environments where path diversity improves the video quality forward error correction can be used to further enhance the quality. We then investigate the effect of IEEE 802.11e Wireless LAN standard with quality of service enabled on the video quality received by a wireless client. We find that assigning all the video to a single class outperforms a cross class assignment scheme proposed by other researchers. The issue of virtual contention at the access point is also examined. We increase the intelligence of our relay nodes and enable them to cache video, in order to maximise the usefulness of these caches. For this purpose, we introduce a measure, called the PSNR profit, and present an optimal caching method for achieving the maximum PSNR profit at the relay nodes where partitioned video contents are stored and provide an enhanced quality for the client. We also show that the optimised cache the degradation in the video quality received by the client becomes more graceful than the non-optimised system when the network experiences packet loss or is congested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead of being another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. Several protocols that work over WMNs include IEEE 802.11a/b/g, 802.15, 802.16 and LTE-Advanced. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. In this paper, we have proposed a scheme to improve channel conditions by performing rate adaptation along with multiple packet transmission using packet loss and physical layer condition. Dynamic monitoring, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria provided greater throughput. The key feature of the proposed method is the combination of the following two factors: 1) detection of intrinsic channel conditions by measuring the fluctuation of noise to signal ratio via the standard deviation, and 2) the detection of packet loss induced through congestion. We have shown that the use of such techniques in a WMN can significantly improve performance in terms of the packet sending rate. The effectiveness of the proposed method was demonstrated in a simulated wireless network testbed via packet-level simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Limited energy is a big challenge for large scale wireless sensor networks (WSN). Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, the impacts of using modulation scaling on packet delivery latency and loss are not considered, which may have adverse effects on the application qualities. In this paper, we study this problem and propose control schemes to minimize energy consumption while ensuring application qualities. We first analyze the relationships of modulation scaling and energy consumption, end-to-end delivery latency and packet loss ratio. With the analytical model, we develop a centralized control scheme to adaptively adjust the modulation levels, in order to minimize energy consumption and ensure the application qualities. To improve the scalability of the centralized control scheme, we also propose a distributed control scheme. In this scheme, the sink will send the differences between the required and measured application qualities to the sensors. The sensors will update their modulation levels with the local information and feedback from the sink. Experimental results show the effectiveness of energy saving and QoS guarantee of the control schemes. The control schemes can adapt efficiently to the time-varying requirements on application qualities. Copyright © 2005 The Institute of Electronics, Information and Communication Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces a joint load balancing and hotspot mitigation protocol for mobile ad-hoc network (MANET) termed by us as 'load_energy balance + hotspot mitigation protocol (LEB+HM)'. We argue that although ad-hoc wireless networks have limited network resources - bandwidth and power, prone to frequent link/node failures and have high security risk; existing ad hoc routing protocols do not put emphasis on maintaining robust link/node, efficient use of network resources and on maintaining the security of the network. Typical route selection metrics used by existing ad hoc routing protocols are shortest hop, shortest delay, and loop avoidance. These routing philosophy have the tendency to cause traffic concentration on certain regions or nodes, leading to heavy contention, congestion and resource exhaustion which in turn may result in increased end-to-end delay, packet loss and faster battery power depletion, degrading the overall performance of the network. Also in most existing on-demand ad hoc routing protocols intermediate nodes are allowed to send route reply RREP to source in response to a route request RREQ. In such situation a malicious node can send a false optimal route to the source so that data packets sent will be directed to or through it, and tamper with them as wish. It is therefore desirable to adopt routing schemes which can dynamically disperse traffic load, able to detect and remove any possible bottlenecks and provide some form of security to the network. In this paper we propose a combine adaptive load_energy balancing and hotspot mitigation scheme that aims at evenly distributing network traffic load and energy, mitigate against any possible occurrence of hotspot and provide some form of security to the network. This combine approach is expected to yield high reliability, availability and robustness, that best suits any dynamic and scalable ad hoc network environment. Dynamic source routing (DSR) was use as our underlying protocol for the implementation of our algorithm. Simulation comparison of our protocol to that of original DSR shows that our protocol has reduced node/link failure, even distribution of battery energy, and better network service efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energy consumption has been a key concern of data gathering in wireless sensor networks. Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, such technique will also impact on both packet delivery latency and packet loss, therefore, may result in adverse effects on the qualities of applications. In this paper, we study the problem of modulation scaling and energy-optimization. A mathematical model is proposed to analyze the impact of modulation scaling on the overall energy consumption, end-to-end mean delivery latency and mean packet loss rate. A centralized optimal management mechanism is developed based on the model, which adaptively adjusts the modulation levels to minimize energy consumption while ensuring the QoS for data gathering. Experimental results show that the management mechanism saves significant energy in all the investigated scenarios. Some valuable results are also observed in the experiments. © 2004 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is unquestioned that the importance of IP network will further increase and that it will serve as a platform for more and more services, requiring different types and degrees of service quality. Modern architectures and protocols are being standardized, which aims at guaranteeing the quality of service delivered to users. In this paper, we investigate the queueing behaviour found in IP output buffers. This queueing increases because multiple streams of packets with different length are being multiplexed together. We develop balance equations for the state of the system, from which we derive packet loss and delay results. To analyze these types of behaviour, we study the discrete-time version of the “classical” queue model M/M/1/k called Geo/Gx/1/k, where Gx denotes a different packet length distribution defined on a range between a minimum and maximum value.