976 resultados para oxidative degradation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many virus diseases of economic importance to agriculture result from mixtures of different pathogens invading the host at a given time. This contrasts with the relatively scarce studies available on the molecular events associated with virus---host interactions in mixed infections. Compared with single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) resulted in increased systemic symptoms (synergism) that led to necrosis of the newly emerging leaves and death of the plant. A comparative transcriptional analysis was undertaken to identify quantitative and qualitative differences in gene expression during this synergistic infection and correlate these changes with the severe symptoms it caused. Global transcription profiles of doubly infected leaves were compared with those from singly infected leaves using gene ontology enrichment analysis and metabolic pathway annotator software. Functional gene categories altered by the double infection comprise suites of genes regulated coordinately, which are associated with chloroplast functions (downregulated), protein synthesis and degradation (upregulated), carbohydrate metabolism (upregulated), and response to biotic stimulus and stress (upregulated). The expressions of reactive oxygen species?generating enzymes as well as several mitogen-activated protein kinases were also significantly induced. Accordingly, synergistic infection induced a severe oxidative stress in N. benthamiana leaves, as judged by increases in lipid peroxidation and by the generation of superoxide radicals in chloroplasts, which correlated with the misregulation of antioxidative genes in microarray data. Interestingly, expression of genes encoding oxylipin biosynthesis was uniquely upregulated by the synergistic infection. Virus-induced gene silencing of ?-dioxygenase1 delayed cell death during PVX?PVY infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamine synthetase (GS) is the key enzyme in ammonia assimilation and catalyzes the ATP-dependent condensation of NH3 with glutamate to produce glutamine. GS in plants is an octameric enzyme. Recent work from our laboratory suggests that GS activity in plants may be regulated at the level of protein turnover (S.J. Temple, T.J. Knight, P.J. Unkefer, C. Sengupta-Gopalan [1993] Mol Gen Genet 236: 315–325; S.J. Temple, S. Kunjibettu, D. Roche, C. Sengupta-Gopalan [1996] Plant Physiol 112: 1723–1733; S.J. Temple, C. Sengupta-Gopalan [1997] In C.H. Foyer, W.P. Quick, eds, A Molecular Approach to Primary Metabolism in Higher Plants. Taylor & Francis, London, pp 155–177). Oxidative modification of GS has been implicated as the first step in the turnover of GS in bacteria. By incubating soybean (Glycine max) root extract enriched in GS in a metal-catalyzed oxidation system to produce the ·OH radical, we have shown that GS is oxidized and that oxidized GS is inactive and more susceptible to degradation than nonoxidized GS. Histidine and cysteine protect GS from metal-catalyzed inactivation, indicating that oxidation modifies the GS active site and that cysteine and histidine residues are the site of modification. Similarly, ATP and particularly ATP/glutamate give the enzyme the greatest protection against oxidative inactivation. The roots of plants fed ammonium nitrate showed a 3-fold increase in the level of GS polypeptides and activity compared with plants not fed ammonium nitrate but without a corresponding increase in the GS transcript level. This would suggest either translational or posttranslational control of GS levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antioxidants may play an important role in preventing free radical damage associated with aging by interfering directly in the generation of radicals or by scavenging them. We investigated the effects of a high vitamin E and/or a high beta-carotene diet on aging of the anion transporter, band 3, in lymphocytes and brain. The band 3 proteins function as anion transporters, acid base regulators, C02 transporters, and structural proteins that provide a framework for membrane lipids and that link the plasma membrane to the cytoskeleton. Senescent cell antigen (SCA), which terminates the life of cells, is a degradation product of band 3. This study was conducted as a double-blind study in which eight groups of middle-aged or old mice received either high levels of beta-carotene and/or vitamin E or standard levels of these supplements in their diets. Anion transport kinetic assays were performed on isolated splenic lymphocytes. Immunoreactivity of an antibody that recognizes aging changes in old band 3 preceding generation of SCA was used to quantitate aged band 3 in brain tissue. Results indicate that vitamin E prevented the observed age-related decline in anion transport by lymphocytes and the generation of aged band 3 leading to SCA formation. beta-Carotene had no significant effect on the results of either assay. Since increased aged band 3 and decreased anion transport are initial steps in band 3 aging, which culminates in the generation of SCA and cellular removal, vitamin E prevents or delays aging of band 3-related proteins in lymphocytes and brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyaniline/montmorillonite nanocomposites (PANI/M) were obtained by intercalation of aniline monomer into M modified with different cations and subsequent oxidative polymerization of the aniline. The modified-clay was prepared by ion exchange of sodium, copper and iron cations in the clay (Na–M, Cu–M and Fe–M respectively). Infrared spectroscopy confirms the electrostatic interaction between the oxidized PANI and the negatively charged surface of the clay. X-ray diffraction analysis provides structural information of the prepared materials. The nanocomposites were characterized by transmission electron microscopy and their thermal degradation was investigated by thermogravimetric analysis. The weight loss suggests that the PANI chains in the nanocomposites have higher thermal stability than pure PANI. The electrical conductivity of the nanocomposites increased between 12 and 24 times with respect to the pure M and this increase was dependent on the cation-modification. The electrochemical behavior of the polymers extracted from the nanocomposites was studied by cyclic voltammetry and a good electrochemical response was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paper submitted to the 7th International Symposium on Feedstock Recycling of Polymeric Materials (7th ISFR 2013), New Delhi, India, 23-26 October 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyvinyl chloride (PVC) is one of the plastics most extensively used due to its versatility. The demand of PVC resin in Europe during 2012 reached 5000 ktonnes1. PVC waste management is a big problem because of the high volume generated all over the world and its chlorine content. End-of-life PVC is mainly mixed with municipal solid waste (MSW) and one common disposal option for this is waste-to-energy incineration (WtE). The presence of plastics such as PVC in the fuel mix increases the heating value of the fuel. PVC has two times higher energy content than MSW ‒around 20 MJ/kg vs 10 MJ/kg, respectively. However, the high chlorine content in PVC resin, 57 wt.%, may be a source for the formation of hazardous chlorinated organic pollutants in thermal processes. Chlorine present in the feedstock of WtE plants plays an important role in the formation of (i) chlorine (Cl2) and (ii) hydrochloric gas (HCl), both of them responsible for corrosion, and (iii) chlorinated organic pollutants2. In this work, pyrolytic and oxidative thermal degradation of PVC resin were carried out in a laboratory scale reactor at 500 ºC in order to analyze the influence of the reaction atmosphere on the emissions evolved. Special emphasis was put on the analysis of chlorinated organic pollutants such as polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofurans (PCDFs) and other related compounds like polychlorobenzenes (PCBzs), polychlorophenols (PCPhs) and polycyclic aromatic hydrocarbons (PAHs). Another objective of this work was to compare the results with those of a previous work3 in which emissions at different temperatures in both pyrolysis and combustion of another PVC resin had been studied; in that case, experiments for PCDD/Fs emissions had been performed only at 850 ºC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid-mobilising factor (LMF) is produced by cachexia-inducing tumours and is involved in the degradation of adipose tissue, with increased oxidation of the released fatty acids through an induction of uncoupling protein (UCP) expression. Since UCP-2 is thought to be involved in the detoxification of free radicals if LMF induced UCP-2 expression in tumour cells, it might attenuate free radical toxicity. As a model system we have used MAC13 tumour cells, which do not produce LMF. Addition of LMF caused a concentration-dependent increase in UCP-2 expression, as determined by immunoblotting. This effect was attenuated by the β3 antagonist SR59230A, suggesting that it was mediated through a β3 adrenoreceptor. Co-incubation of LMF with MAC13 cells reduced the growth-inhibitory effects of bleomycin, paraquat and hydrogen peroxide, known to be free radical generators, but not chlorambucil, an alkylating agent. There was no effect of LMF alone on cellular proliferation. These results indicate that LMF antagonises the antiproliferative effect of agents working through a free radical mechanism, and may partly explain the unresponsiveness to the chemotherapy of cachexia-inducing tumours. © 2004 Cancer Research UK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of titania derived nanocomposites synthesized via sol-gel and hydrothermal routes exhibit excellent performance for the photocatalytic degradation of two important exemplar water pollutants, oxytetracycline and Congo Red. Low loadings of Co3O4 nanoparticles dispersed over the surfaces of anatase TiO2 confer visible light photoactivity for the aqueous phase decomposition of organics through the resulting heterojunction and reduced band gap. Subsequent modification of these Co3O4/TiO2 composites by trace amounts of graphene oxide nanosheets in the presence of a diamine linker further promotes both oxytetracycline and Congo Red photodegradation under simulated solar and visible irradiation, through a combination of enhanced photoresponse and consequent radical generation. Radical quenching and fluorescence experiments implicate holes and hydroxyl radicals as the respective primary and secondary active species responsible for oxidative photodegradation of pollutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. We investigated structural differences in the fatty acid profiles of lipids extracted from ex vivo contact lenses by using gas chromatography mass spectrometry (GCMS). Two lens materials (balafilcon A or lotrafilcon A) were worn on a daily or continuous wear schedule for 30 and 7 days. Methods. Lipids from subject-worn lenses were extracted using 1:1 chloroform: methanol and transmethylated using 5% sulfuric acid in methanol. Fatty acid methyl esters (FAMEs) were collected using hexane and water, and analyzed by GCMS (Varian 3800 GC, Saturn 2000 MS). Results. The gas chromatograms of lens extracts that were worn on a continuous wear schedule showed two predominant peaks, C16:0 and C18:0, both of which are saturated fatty acids. This was the case for balafilcon A and lotrafilcon A lenses. However, the gas chromatograms of lens extracts that were worn on a daily wear schedule showed saturated (C16:0, C18:0) and unsaturated (C16:1 and C18:1) fatty acids. Conclusions. Unsaturated fatty acids are degraded during sleep in contact lenses. Degradation occurred independently of lens material or subject-to-subject variability in lipid deposition. The consequences of lipid degradation are the production of oxidative products, which may be linked to contact lens discomfort. © 2014 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle wasting in cancer cachexia is associated with increased levels of malondialdehyde (MDA) in gastrocnemius muscles, suggesting an increased oxidative stress. To determine whether oxidative stress contributes to muscle protein catabolism, an in vitro model system, consisting of C2C12 myotubes, was treated with either 0.2 mM FeSO4, 0.1 mM H2O2, or both, to replicate the rise in MDA content in cachexia. All treatments caused an increased protein catabolism and a decreased myosin expression. There was an increase in the proteasome chymotrypsin-like enzyme activity, while immunoblotting showed an increased expression of the 20S proteasome α-subunits, p42, and the ubiquitin-conjugating enzyme, E214k. These results show that mild oxidative stress increases protein degradation in skeletal muscle by causing an increased expression of the major components of the ubiquitin-proteasome pathway. © 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the comonomer content in a series of metallocene-based ethylene-1-octene copolymers (m-LLDPE) on thermo-mechanical, rheological, and thermo-oxidative behaviours during melt processing were examined using a range of characterisation techniques. The amount of branching was calculated from 13C NMR and studies using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were employed to determine the effect of short chain branching (SCB, comonomer content) on thermal and mechanical characteristics of the polymer. The effect of melt processing at different temperatures on the thermo-oxidative behaviour of the polymers was investigated by examining the changes in rheological properties, using both melt flow and capillary rheometry, and the evolution of oxidation products during processing using infrared spectroscopy. The results show that the comonomer content and catalyst type greatly affect thermal, mechanical and oxidative behaviour of the polymers. For the metallocene polymer series, it was shown from both DSC and DMA that (i) crystallinity and melting temperatures decreased linearly with comonomer content, (ii) the intensity of the ß-transition increased, and (iii) the position of the tan δmax peak corresponding to the a-transition shifted to lower temperatures, with higher comonomer content. In contrast, a corresponding Ziegler polymer containing the same level of SCB as in one of the m-LLDPE polymers, showed different characteristics due to its more heterogeneous nature: higher elongational viscosity, and a double melting peak with broader intensity that occurred at higher temperature (from DSC endotherm) indicating a much broader short chain branch distribution. The thermo-oxidative behaviour of the polymers after melt processing was similarly influenced by the comonomer content. Rheological characteristics and changes in concentrations of carbonyl and the different unsaturated groups, particularly vinyl, vinylidene and trans-vinylene, during processing of m-LLDPE polymers, showed that polymers with lower levels of SCB gave rise to predominantly crosslinking reactions at all processing temperatures. By contrast, chain scission reactions at higher processing temperatures became more favoured in the higher comonomer-containing polymers. Compared to its metallocene analogue, the Ziegler polymer showed a much higher degree of crosslinking at all temperatures because of the high levels of vinyl unsaturation initially present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two antioxidant modified layered double hydroxides (AO-LDHs) were successfully prepared by theintercalation of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid (IrganoxCOOH) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) in the layered structure of LDH. It was foundthat by anchoring the phenolic moieties to the LDH layers the antioxidant power is retained in the caseof Trolox, and even amplified in the case of IrganoxCOOH. A small amount of the two AO-LDHs wasincorporated into poly(lactic acid), PLA, by solution mixing and melt extrusion. The thermo-oxidativestability of the composites was compared with that of the neat PLA and PLA containing free AOs. SECanalysis indicates that, after a controlled period of ageing, both the AO-LDHs protect the PLA fromchain scission. The oxidation induction time (OIT, DSC) at 230 °C shows also the beneficial effects ofthe presence of the functional filler in the polymer matrix. Further, results from a preliminary migrationtest suggest that the AO species have a low tendency to migrate away from the AO-LDHs embedded inthe polymer matrix thus keeping the AO protected inside the nanofiller layers thereby remaining activefor a longer time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding of seed ageing, which leads to viability loss during storage, is vital for ex situ plant conservation and agriculture alike. Yet the potential for regulation at the transcriptional level has not been fully investigated. Here, we studied the relationship between seed viability, gene expression and glutathione redox status during artificial ageing of pea (Pisum sativum) seeds. Transcriptome-wide analysis using microarrays was complemented with qRT-PCR analysis of selected genes and a multilevel analysis of the antioxidant glutathione. Partial degradation of DNA and RNA occurred from the onset of artificial ageing at 60% RH and 50 degrees C, and transcriptome profiling showed that the expression of genes associated with programmed cell death, oxidative stress and protein ubiquitination were altered prior to any sign of viability loss. After 25 days of ageing viability started to decline in conjunction with progressively oxidising cellular conditions, as indicated by a shift of the glutathione redox state towards more positive values (>-190 mV). The unravelling of the molecular basis of seed ageing revealed that transcriptome reprogramming is a key component of the ageing process, which influences the progression of programmed cell death and decline in antioxidant capacity that ultimately lead to seed viability loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Pine wilt disease (PWD) is a worldwide threat to pine forests, and is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Bacteria are known to be associated with PWN and may have an important role in PWD. Serratia sp. LCN16 is a PWN-associated bacterium, highly resistant to oxidative stress in vitro, and which beneficially contributes to the PWN survival under these conditions. Oxidative stress is generated as a part of the basal defense mechanism used by plants to combat pathogenic invasion. Here, we studied the biology of Serratia sp. LCN16 through genome analyses, and further investigated, using reverse genetics, the role of two genes directly involved in the neutralization of H2O2, namely the H2O2 transcriptional factor oxyR; and the H2O2-targeting enzyme, catalase katA. Results: Serratia sp. LCN16 is phylogenetically most closely related to the phytosphere group of Serratia, which includes S. proteamaculans, S. grimessi and S. liquefaciens. Likewise, Serratia sp. LCN16 shares many features with endophytes (plant-associated bacteria), such as genes coding for plant polymer degrading enzymes, iron uptake/ transport, siderophore and phytohormone synthesis, aromatic compound degradation and detoxification enzymes. OxyR and KatA are directly involved in the high tolerance to H2O2 of Serratia sp. LCN16. Under oxidative stress, Serratia sp. LCN16 expresses katA independently of OxyR in contrast with katG which is under positive regulation of OxyR. Serratia sp. LCN16 mutants for oxyR (oxyR::int(614)) and katA (katA::int(808)) were sensitive to H2O2 in relation with wild-type, and both failed to protect the PWN from H2O2-stress exposure. Moreover, both mutants showed different phenotypes in terms of biofilm production and swimming/swarming behaviors. Conclusions: This study provides new insights into the biology of PWN-associated bacteria Serratia sp. LCN16 and its extreme resistance to oxidative stress conditions, encouraging further research on the potential role of this bacterium in interaction with PWN in planta environment.