862 resultados para optical tweezers technique


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent advances in our ability to watch the molecular and cellular processes of life in action-such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer-raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a configuration consisting of two fiberised Michelson interferometers and show that, with an optical balanced technique and suitable electronics, the signal corresponding to coherent interference in the first interferometer can be sufficiently attenuated in the channel processing the signal from the second interferometer. In this way it is possible to display simultaneous reflectograms of two different regions in the eye (e.g. cornea and retina) and infer the eye length from these measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single-molecule manipulation experiments of molecular motors provide essential information about the rate and conformational changes of the steps of the reaction located along the manipulation coordinate. This information is not always sufficient to define a particular kinetic cycle. Recent single-molecule experiments with optical tweezers showed that the DNA unwinding activity of a Phi29 DNA polymerase mutant presents a complex pause behavior, which includes short and long pauses. Here we show that different kinetic models, considering different connections between the active and the pause states, can explain the experimental pause behavior. Both the two independent pause model and the two connected pause model are able to describe the pause behavior of a mutated Phi29 DNA polymerase observed in an optical tweezers single-molecule experiment. For the two independent pause model all parameters are fixed by the observed data, while for the more general two connected pause model there is a range of values of the parameters compatible with the observed data (which can be expressed in terms of two of the rates and their force dependencies). This general model includes models with indirect entry and exit to the long-pause state, and also models with cycling in both directions. Additionally, assuming that detailed balance is verified, which forbids cycling, this reduces the ranges of the values of the parameters (which can then be expressed in terms of one rate and its force dependency). The resulting model interpolates between the independent pause model and the indirect entry and exit to the long-pause state model

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cellular behavior is dependent on a variety of extracellular cues required for normal tissue function, wound healing, and activation of the immune system. Removed from their in vivo microenvironment and cultured in vitro, cells lose many environmental cues and that may result in abberant behavior, making it difficult to study cellular processes. In order to mimic native tissue environments, optical tweezer and microfluidic technologies were used to place cells within defined areas of the culture environment. To provide three dimensional supports found in natural tissues, hydrogel scaffolds of poly (ethylene glycol) diacrylate and the basement membrane matrix Matrigel were used. Optical tweezer technology allowed precision placement and formation of homotypic and heterotypic arrays of human U937, HEK 293, and porcine mesenchymal stem cells. Alternatively, two microfluidic devices were designed to pattern Matrigel scaffolds. The first microfluidic device utilized laminar flow to spatially pattern multiple cell types within the device. Gradients of soluble molecules were then be formed and manipulated across the Matrigel scaffolds. Patterning Matrigel using laminar flow techniques require microfluidic expertise and do not produce consistent patterning conditions, limiting their use difficult in most cell culture laboratories. Thus, a buried Matrigel polydimethylsiloxane (PDMS) device was developed for spatial patterning of biological scaffolds. Matrigel is injected into micron sized channels of PDMS fabricated by soft lithography and allowed to thermally cure. Following curing, a second PDMS device was placed on top of the buried Matrigel channels to support media flow. In order to validate these systems, a cell-cell communication model system was developed utilizing LPS and TNFα signaling with fluorescent reporter systems to monitor communication in real time. We demonstrated the utility of microfluidic devices to support the cell-cell communication model system by co culturing three cell types within Matrigel scaffolds and monitoring signaling activity via fluorescent reporters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of molecular sensors plays a very important role within nanotechnology and especially in the development of different devices for biomedical applications. Biosensors can be classified according to various criteria such as the type of interaction established between the recognition element and the analyte or the type of signal detection from the analyte (transduction). When Raman spectroscopy is used as an optical transduction technique the variations in the Raman signal due to the physical or chemical interaction between the analyte and the recognition element has to be detected. Therefore any significant improvement in the amplification of the optical sensor signal represents a breakthrough in the design of molecular sensors. In this sense, Surface-Enhanced Raman Spectroscopy (SERS) involves an enormous enhancement of the Raman signal from a molecule in the vicinity of a metal surface. The main objective of this work is to evaluate the effect of a monolayer of graphene oxide (GO) on the distribution of metal nanoparticles (NPs) and on the global SERS enhancement of paminothiophenol (pATP) and 4-mercaptobenzoic acid (4MBA) adsorbed on this substrate. These aromatic bifunctional molecules are able to interact to metal NPs and also they offer the possibility to link with biomolecules. Additionally by decorating Au or Ag NPs on graphene sheets, a coupled EM effect caused by the aggregation of the NPs and strong electronic interactions between Au or Ag NPs and the graphene sheets are considered to be responsible for the significantly enhanced Raman signal of the analytes [1-2]. Since there are increasing needs for methods to conduct reproducible and sensitive Raman measurements, Grapheneenhanced Raman Scattering (GERS) is emerging as an important method [3].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An inexpensive and effective simple method for the preparation of nano-crystalline titanium oxide (anatase) thin films at room temperature on different transparent substrates is presented. This method is based on the use of peroxo-titanium complex, i.e. titanium isopropoxide as a single initiating organic precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into titanium oxide (TiO2) crystalline (anatase) phase. These films have been characterized for X-ray diffraction (XRD) studies, atomic force microscopic (AFM) studies and optical measurements. The optical constants such as refractive index and extinction coefficient have been estimated by using envelope technique. Also, the energy gap values have been estimated using Tauc's formula for on glass and quartz substrates are found to be 3.35 eV and 3.39 eV, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An inexpensive and effective simple method for the preparation of nano-crystalline titanium oxide (anatase) thin films at room temperature on different transparent substrates is presented. This method is based on the use of peroxo-titanium complex, i.e. titanium isopropoxide as a single initiating organic precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into titanium oxide (TiO2) crystalline (anatase) phase. These films have been characterized for X-ray diffraction (XRD) studies, atomic force microscopic (AFM) studies and optical measurements. The optical constants such as refractive index and extinction coefficient have been estimated by using envelope technique. Also, the energy gap values have been estimated using Tauc's formula for on glass and quartz substrates are found to be 3.35 eV and 3.39 eV, respectively. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tin sulfide (SnS) is a material of interest for use as an absorber in low cost solar cells. Single crystals of SnS were grown by the physical vapor deposition technique. The grown crystals were characterized to evaluate the composition, structure, morphology, electrical and optical properties using appropriate techniques. The composition analysis indicated that the crystals were nearly stoichiometric with Sn-to-S atomic percent ratio of 1.02. Study of their morphology revealed the layered type growth mechanism with low surface roughness. The grown crystals had orthorhombic structure with (0 4 0) orientation. They exhibited an indirect optical band gap of 1.06 eV and direct band gap of 1.21 eV with high absorption coefficient (up to 10(3) cm(-1)) above the fundamental absorption edge. The grown crystals were of p-type with an electrical resistivity of 120 Omega cm and carrier concentration 1.52 x 10(15) cm(-3). Analysis of optical absorption and diffuse reflectance spectra showed the presence of a wide absorption band in the wavelength range 300-1200 nm, which closely matches with a significant part of solar radiation spectrum. The obtained results were discussed to assess the suitability of the SnS crystal for the fabrication of optoelectronic devices. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new method based on analysis of a single diffraction pattern is proposed to measure deflections in micro-cantilever (MC) based sensor probes, achieving typical deflection resolutions of 1nm and surface stress changes of 50 mu N/m. The proposed method employs a double MC structure where the deflection of one of the micro-cantilevers relative to the other due to surface stress changes results in a linear shift of intensity maxima of the Fraunhofer diffraction pattern of the transilluminated MC. Measurement of such shifts in the intensity maxima of a particular order along the length of the structure can be done to an accuracy of 0.01mm leading to the proposed sensitivity of deflection measurement in a typical microcantilever. This method can overcome the fundamental measurement sensitivity limit set by diffraction and pointing stability of laser beam in the widely used Optical Beam Deflection method (OBDM).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

TiO2 thin films were prepared by sol gel method. The structural investigations performed by means of X- ray diffraction (XRD) technique, Scanning electronic microscopy (SEM) showed the shape structure at T=600°C. The optical constants of the deposited film were obtained from the analysis of the experimental recorded transmittance spectral data over the wavelengths range 200-3000 nm. The values of some important parameters (refractive index n, dielectric constant ε ∞ and thickness d), and the third order optical nonlinear susceptibility χ(3) of TiO2 film are determined from these spectra. It has been found that the dispersion data obey the single oscillator relation of the Wemple-DiDomenico model, from which the dispersion parameters and high – frequency dielectric constant were determined. The estimation of the corresponding band gap Eg , χ (3) and ε ∞ are 2.57 eV, 0.021 × 10-10 esu and 5.20,respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant ('a' and `c'), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 10(6) Omega-cm at higher temperature and 10(5) Omega-cm at lower temperature. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Wheeler-Feynman (WF) absorber theory of radiation though no more of interest in explaining self interaction of an electron, can be very useful in today's research in small scale optical systems. The significance of the WF absorber is the use of time-symmetrical solution of Maxwell's equations as opposed to only the retarded solution. The radiative coupling of emitters to nano wires in the near field and change in their lifetimes due to small mode volume enclosures have been elucidated with the retarded solutions before. These solutions have also been shown to agree with quantum electrodynamics, thus allowing for classical electromagnetic approaches in such problems. It is here assumed that the radiative coupling of the emitter with a body is in proportion to its contribution to the classical force of radiative reaction as derived in the WF absorber theory. Representing such nano structures as a partial WF absorber acting on the emitter makes the computations considerably easier than conventional electromagnetic solutions for full boundary conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

TiO2 and Al2O3 are commonly used materials in optical thin films in the visible and near‐infrared wavelength region due to their high transparency and good stability. In this work, TiO2 and Al2O3 single, and nano composite thin films with different compositions were deposited on glass and silicon substrates at room temperature using a sol‐gel spin coater. The optical properties like reflectance, transmittance and refractive index have been studied using Spectrophotometer, and structural properties using X‐Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).