951 resultados para optical switching
Resumo:
A matrix analysis for free-space switching networks, such as perfect shuffle-exchange omega, crossover and Banyan is presented. On the basis of matrix analysis, the equivalence of these three switching networks and the route selection between input and output ports are simply explained. Furthermore, an optical crossover switching network, where MQW SEED arrays are used as electrically addressed four-function interchange nodes, is described and the optical crossover interconnection of 64 x 64, and high-speed four-function, interchange nodes is demonstrated in the experiment.
Resumo:
Tese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2009
Resumo:
All-optical label swapping (AOLS) forms a key technology towards the implementation of all-optical packet switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the way in which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This paper studies all-optical label stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this paper, an integer lineal program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more
Resumo:
Routing techniques used in wavelength routed optical networks (WRN) do not give an efficient solution with Waveband routed optical networks (WBN) as the objective of routing in WRN is to reduce the blocking probability and that in WBN is to reduce the number of switching ports. Routing in WBN can be divided two parts, finding the route and grouping the wavelength assigned into that route with some existing wavelengths/wavebands. In this paper, we propose a heuristic for waveband routing, which uses a new grouping strategy called discontinuous waveband grouping to group the wavelengths into a waveband. The main objective of our algorithm is to decrease the total number of ports required and reduce the blocking probability of the network. The performance of the heuristic is analyzed using simulation on a WBN with non-uniform wavebands.
Resumo:
As wavelength-division multiplexing (WDM) evolves towards practical applications in optical transport networks, waveband switching (WBS) has been introduced to cut down the operational costs and to reduce the complexities and sizes of network components, e.g., optical cross-connects (OXCs). This paper considers the routing, wavelength assignment and waveband assignment (RWWBA) problem in a WDM network supporting mixed waveband and wavelength switching. First, the techniques supporting waveband switching are studied, where a node architecture enabling mixed waveband and wavelength switching is proposed. Second, to solve the RWWBA problem with reduced switching costs and improved network throughput, the cost savings and call blocking probabilities along intermediate waveband-routes are analyzed. Our analysis reveals some important insights about the cost savings and call blocking probability in relation to the fiber capacity, the candidate path, and the traffic load. Third, based on our analysis, an online integrated intermediate WBS algorithm (IIWBS) is proposed. IIWBS determines the waveband switching route for a call along its candidate path according to the node connectivity, the link utilization, and the path length information. In addition, the IIWBS algorithm is adaptive to real network applications under dynamic traffic requests. Finally, our simulation results show that IIWBS outperforms a previous intermediate WBS algorithm and RWA algorithms in terms of network throughput and cost efficiency.
Resumo:
Due to the lack of optical random access memory, optical fiber delay line (FDL) is currently the only way to implement optical buffering. Feed-forward and feedback are two kinds of FDL structures in optical buffering. Both have advantages and disadvantages. In this paper, we propose a more effective hybrid FDL architecture that combines the merits of both schemes. The core of this switch is the arrayed waveguide grating (AWG) and the tunable wavelength converter (TWC). It requires smaller optical device sizes and fewer wavelengths and has less noise than feedback architecture. At the same time, it can facilitate preemptive priority routing which feed-forward architecture cannot support. Our numerical results show that the new switch architecture significantly reduces packet loss probability.
Resumo:
In this paper, we consider the problem of topology design for optical networks. We investigate the problem of selecting switching sites to minimize total cost of the optical network. The cost of an optical network can be expressed as a sum of three main factors: the site cost, the link cost, and the switch cost. To the best of our knowledge, this problem has not been studied in its general form as investigated in this paper. We present a mixed integer quadratic programming (MIQP) formulation of the problem to find the optimal value of the total network cost. We also present an efficient heuristic to approximate the solution in polynomial time. The experimental results show good performance of the heuristic. The value of the total network cost computed by the heuristic varies within 2% to 21% of its optimal value in the experiments with 10 nodes. The total network cost computed by the heuristic for 51% of the experiments with 10 node network topologies varies within 8% of its optimal value. We also discuss the insight gained from our experiments.
Resumo:
The need for high bandwidth, due to the explosion of new multi\-media-oriented IP-based services, as well as increasing broadband access requirements is leading to the need of flexible and highly reconfigurable optical networks. While transmission bandwidth does not represent a limit due to the huge bandwidth provided by optical fibers and Dense Wavelength Division Multiplexing (DWDM) technology, the electronic switching nodes in the core of the network represent the bottleneck in terms of speed and capacity for the overall network. For this reason DWDM technology must be exploited not only for data transport but also for switching operations. In this Ph.D. thesis solutions for photonic packet switches, a flexible alternative with respect to circuit-switched optical networks are proposed. In particular solutions based on devices and components that are expected to mature in the near future are proposed, with the aim to limit the employment of complex components. The work presented here is the result of part of the research activities performed by the Networks Research Group at the Department of Electronics, Computer Science and Systems (DEIS) of the University of Bologna, Italy. In particular, the work on optical packet switching has been carried on within three relevant research projects: the e-Photon/ONe and e-Photon/ONe+ projects, funded by the European Union in the Sixth Framework Programme, and the national project OSATE funded by the Italian Ministry of Education, University and Scientific Research. The rest of the work is organized as follows. Chapter 1 gives a brief introduction to network context and contention resolution in photonic packet switches. Chapter 2 presents different strategies for contention resolution in wavelength domain. Chapter 3 illustrates a possible implementation of one of the schemes proposed in chapter 2. Then, chapter 4 presents multi-fiber switches, which employ jointly wavelength and space domains to solve contention. Chapter 5 shows buffered switches, to solve contention in time domain besides wavelength domain. Finally chapter 6 presents a cost model to compare different switch architectures in terms of cost.
Resumo:
Switching of a signal beam by another control beam at different wavelength is demonstrated experimentally using the optical bistability occurring in a 1.55 mm-distributed feedback semiconductor optical amplifier (DFBSOA) working in reflection. Counterclockwise (S-shaped) and reverse (clockwise) bistability are observed in the output of the control and the signal beam respectively, as the power of the input control signal is increased. With this technique an optical signal can be set in either of the optical input wavelengths by appropriate choice of the powers of the input signals. The switching properties of the DFBSOA are studied experimentally as the applied bias current is increased from below to above threshold and for different levels of optical power in the signal beam and different wavelength detunings between both input signals. Higher on-off extinction ratios, wider bistable loops and lower input power requirements for switching are obtained when the DFBSOA is operated slightly above its threshold value.
Resumo:
We demonstrate bandpass nonlinear switching, using a novel device configuration based on a nonlinear-optical loop mirror and an in-fiber Bragg grating. Self-switching is demonstrated in the soliton regime by use of an asymmetrically arranged in-fiber Bragg grating as a wavelength-selective element. In addition, we adapt the configuration to perform efficient two-wavelength switching.
Resumo:
We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics.
Resumo:
The application of orthogonal frequency-division multiplexing (OFDM) in an optical burst-switched system employing a single fast switching sample grating-distributed Bragg reflector (SG-DBR) laser is demonstrated experimentally. The effect of filter profiles compatible with 50, 25, and 12.5 GHz wavelength-division multiplexing grids on the system is investigated with system performance examined in terms of error vector magnitude per subcarrier for OFDM burst data beginning at various times after a switching event. Additionally the placement of the OFDM training sequence within the data burst and its effect on the system is investigated.
Resumo:
Nonlinear optical loop mirror (NOLM) requires breaking the loop symmetry to enable the counter propagating pulses to acquire a differential π phase shift. This is achieved with either an asymmetric fused fibre coupler at the input or by the inclusion of an asymmetrically located gain or loss element within the loop. By introducing a frequency selective loss element, nonlinear switching may be confined to a narrow band of wavelengths or multiple wavelengths. This configuration may have applications in time-wavelength demultiplexing. We demonstrate this technique of bandpass switching in the soliton regime using a fibre-Bragg grating reflector as the wavelength dependent loss.
Resumo:
A novel device configuration is used to demonstrate wavelength-confined, a bandpass, switching in a nonlinear-optical loop mirror (WOLM). Demonstrated is a self-switching in the soliton regime using a partially reflecting Bragg grating as a wavelength-dependent loss element. Two wavelength operation in which a signal is switched through the use of cross phase modulation, are demonstrated. Observed is the operation of the device confined to wavelengths defined by the grating reflection band.