600 resultados para optical fibre sensing
Resumo:
This thesis presents the fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in polymer optical fibre (POF). Possible fabrication techniques were discussed to fabricate FBGs in polymer optical fibre including a detailed description of the phase mask inscription technique used to fabricate FBGs in both single and multi mode microstructured polymer optical fibre (mPOF). Complementing the fabrication of polymer optical fibre Bragg gratings (POFBGs), a technique has been developed to permanently splice POF to silica optical fibre with the use of an optical adhesive. This allowed for the fabricated POFBGs to be characterised away from the optical table, allowing for application specific characterisation. Furthermore Bragg gratings have been fabricated in polymer POF with a Bragg response within the 800nm spectral region. Within this spectral region, POF predominantly manufactured from PMMA experiences considerably smaller attenuation losses when compared to the attenuation losses within the 1550nm spectral region. The effect of thermally annealing fabricated POFBGs has been studied. This included demonstrating the ability to tune the Bragg wavelength of a POFBG sensor to a desired wavelength. Thermal annealing has also been used to manufacture wavelength division multiplexed sensors with the use of a single phase mask. Finally POFBGs have been fabricated in Topas Cyclic Olefin Copolymer. Fabrication of Bragg gratings within this copolymer allowed for the first demonstration of near immunity to relative humidity whilst monitoring changes in temperature of the environment the POFBG sensor was in. Bragg gratings fabricated in the Topas copolymer demonstrated sensitivity to relative humidity which was 65 times less than that of a PMMA based POFBG sensor. This decrease in sensitivity has the potential to significantly reduce the potential of cross sensitivity to relative humidity whilst being employed to monitor measurands such as temperature and axial strain.
Resumo:
The inscription of Bragg gratings has been demonstrated in PMMA-based polymer optical fibre. The water affinity of PMMA can introduce significant wavelength change in a polymer optical fibre Bragg grating (POFBG). In polymer optical fibre losses are much higher than with silica fibre. Very strong absorption bands related to higher harmonics of vibrations of the C-H bond dominate throughout the visible and near infrared. Molecular vibration in substances generates heat, which is referred to as the thermal effect of molecular vibration. This means that a large part of the absorption of optical energy in those spectral bands will convert into thermal energy, which eventually drives water content out of the polymer fibre and reduces the wavelength of POFBG. In this work we have investigated the wavelength stability of POFBGs in different circumstances. The experiment has shown that the characteristic wavelength of a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fibre is established, depending on the initial water content inside the fibre, the surrounding humidity, the optical power applied, and the fibre size. Our investigation has shown that POFBGs operating at around 850 nm show much smaller wavelength reduction than those operating at around 1550 nm in the same fibre; POFBGs with different diameters show different changes; POFBGs powered by a low level light source, or operating in a very dry environment are least affected by this thermal effect.
Resumo:
The present work addresses the control of the mPOF Bragg grating spectrum properties through acousto-optic modulation. For the first time, the interaction of a flexural acoustic wave, generated by longitudinal excitation of different frequencies, with the Bragg grating will be presented. Also it will be demonstrated the quasi linear relationship between PZT load and maximum reflected power/ 3dB bandwidth of the reflected spectrum.
Resumo:
We present measurements on the non-linear temperature response of fibre Bragg gratings recorded in pure and trans-4-stilbenemethanol-doped polymethyl methacrylate (PMMA) holey fibres.
Resumo:
Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.
Resumo:
We present an optical bend sensor based on a Bragg grating written in an eccentric core polymer optical fibre. The grating wavelength shifts are studied as a function of bend curvature and fibre orientation and the device exhibits strong fibre orientation dependence, wide bend curvature range of ± 22.7 m-1 and high bend sensitivity of 63 pm/m-1, which is 80 times higher than the reported sensor based on an offset-FBG in standard single mode silica fibre.
Resumo:
We describe recent research into devices based on fibre Bragg gratings in polymer optical fibre. Firstly, we report on the inscription of gratings in a variety of microstructured polymer optical fibre: single mode, few moded and multimoded, as well as fibre doped with trans-4-stilbenmethanol. Secondly, we describe research into an electrically tuneable filter using a metallic coating on a polymer fibre Bragg grating. Finally we present initial results from attempts to produce more complex grating structures in polymer fibre: a Fabry-Perot cavity and a phase-shifted grating.
Resumo:
A report is made that the rate at which type IA fibre Bragg gratings may be inscribed is related to the intensity of the UV inscription laser and that these gratings may be written in only a few minutes. Also presented is the model of the refractive index of type IA gratings.
Resumo:
All-optical data processing is expected to play a major role in future optical communications. Nonlinear effects in optical fibres have many attractive features and a great, not yet fully explored potential in optical signal processing. Here, we overview our recent advances in developing novel techniques and approaches to all-optical processing based on optical fibre nonlinearities.
Resumo:
A long period fibre grating written in progressive three layered optical fibre was examined. The bending sensitivity of the optical fibre was measured. It was found that the fibre shows an attenuation band that has a very low bending sensitivity compared to normal step-index fibres.
Resumo:
Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of -3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m-1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10-2 m-1 for curvature and ±5 × 10-2 °C for temperature.
Resumo:
We present a thorough study on the development of a polymer optical fibre-based tuneable filter utilizing an intra-core Bragg grating that is electrically tuneable, operating at 1.55 νm. The Bragg grating is made tuneable using a thin-film resistive heater deposited on the surface of the fibre. The polymer fibre was coated via the photochemical deposition of a Pd/Cu metallic layer with the procedure induced by VUV radiation at room temperature. The resulting device, when wavelength tuned via Joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of -13.4 pm mW-1 and time constant of 1.7 s-1. A basic theoretical study verified that for this fibre type one can treat the device as a one-dimensional system. The model was extended to include the effect of input electrical power changes on the refractive index of the fibre and subsequently to changes in the Bragg wavelength of the grating, showing excellent agreement with the experimental measurements. © 2007 IOP Publishing Ltd.
Resumo:
This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 µm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.
Resumo:
A frequency-modulated continuous-wave technique is used to detect the presence of frequency shifts in the Rayleigh-backscattered light in a single-mode optical fiber as a result of a changing temperature. The system is able to detect a rate of temperature change of 0.014 K/s, when a 20-cm length of fiber is heated. The system is also able to demonstrate a spatial resolution of better than 15 cm.
Resumo:
We report an implementation of optical fibre sensors based on fibre Bragg gratings with excessively tilted (>45°) structures, showing distinctive polarisation characteristics, desirable low thermal-cross-sensitivity and enhanced responsivity to surrounding-medium-refractive-index.