974 resultados para optical angular momentum


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect on the scattering amplitude of the existence of a pole in the angular momentum plane near J = 1 in the channel with the quantum numbers of the vacuum is calculated. This is then compared with a fourth order calculation of the scattering of neutral vector mesons from a fermion pair field in the limit of large momentum transfer. The presence of the third double spectral function in the perturbation amplitude complicates the identification of pole trajectory parameters, and the limitations of previous methods of treating this are discussed. A gauge invariant scheme for extracting the contribution of the vacuum trajectory is presented which gives agreement with unitarity predictions, but further calculations must be done to determine the position and slope of the trajectory at s = 0. The residual portion of the amplitude is compared with the Gribov singularity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent theoretical developments in the reggeization of inelastic processes involving particles with high spin are incorporated into a model of vector meson production. A number of features of experimental differential cross sections and density matrices are interpreted in terms of this model.

The method chosen for reggeization of helicity amplitudes first separates kinematic zeros and singularities from the parity-conserving amplitudes and then applies results of Freedman and Wang on daughter trajectories to the remaining factors. Kinematic constraints on helicity amplitudes at t = 0 and t = (M – MΔ)2 are also considered.

It is found that data for reactions of types πN→VN and πN→VΔ are consistent with a model of this type in which all kinematic constraints at t = 0 are satisfied by evasion (vanishing of residue functions). As a quantitative test of the parametrization, experimental differential cross sections of vector meson production reactions dominated by pion trajectory exchange are compared with the theory. It is found that reduced residue functions are approximately constant, once the kinematic behavior near t = (M – MΔ)2 has been removed.

The alternative possibility of conspiracy between amplitudes is also discussed; and it is shown that unless conspiracy is present, some amplitudes allowed by angular momentum conservation will not contribute with full strength in the forward direction. An example, γp→π+n in which the data for dσ/dt indicate conspiracy, is studied in detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nós estudamos a competição entre a instabilidade de Pomeranchuk no canal de spin com momento angular l=1 e uma interação atrativa, favorecendo a formação de um par de Cooper. Achamos, numa aproximação de campo médio, uma forte supressão da instabilidade de Pomeranchuk via supercondutividade. Além disso, identificamos uma fase supercondutora metaestável com características semelhantes ao estado FFLO. Um líquido de Fermi é, com exceção de uma dimensão, um estado muito estável da matéria. Por outro lado dois tipos de instabilidades, relacionadas com interações atrativas, são conhecidas: Instabilidades Pomeranchuk e supercondutora. As instabilidades Pomeranchuk ocorrem na presença da interação de dois corpos contendo uma forte componente atrativa no canal de espalhamento para frente com momento angular definido. No contexto da teoria de Landau, a instabilidade ocorre quando um ou mais parâmetros admensionais de Landau nos canais de spin ou carga, adquirem altos valores negativos. As instabilidades Pomeranchuk no setor de carga quebram a simetria de rotação. Em particular, uma instabilidade em alguns canais produz uma deformação elipsoidal na superfície de Fermi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

9th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields (IARD)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esse texto trata do problema de um fluido contaminado escoando por um meio poroso, tratando os componentes na mistura como meios contínuos. Na primeira parte, desenvolvemos a teoria de misturas de meios contínuos e discutimos equações da continuidade, momento linear e momento angular. A seguir, descrevemos o problema em detalhe e fazemos hipóteses para simplificar o escoamento. Aplicamos as equações encontradas anteriormente para encontrarmos um sistema de equações diferenciais parciais. Desse ponto em diante, o problema se torna quase puramente matemático. Discutimos o caso insaturado, e depois a saturação do meio poroso. Finalmente, adicionamos um contaminante à mistura e, em seguida, N contaminantes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant. As with the swirling blob, an imposed magnetic field inhibits the formation of a vortex sheet. A strong magnetic field completely suppresses the phenomenon, replacing it with an axial diffusion of momentum, while a weak magnetic field allows the sheet to form, but places a lower bound on its thickness. The magnetic field does not, however, change the net vertical momentum of the blob, which always increases linearly with time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analysis is given of velocity and pressure-dependent sliding flow of a thin layer of damp granular material in a spinning cone. Integral momentum equations for steady state, axisymmetric flow are derived using a boundary layer approximation. These reduce to two coupled first-order differential equations for the radial and circumferential sliding velocities. The influence of viscosity and friction coefficients and inlet boundary conditions is explored by presentation of a range of numerical results. In the absence of any interfacial shear traction the flow would, with increasing radial and circumferential slip, follow a trajectory from inlet according to conservation of angular momentum and kinetic energy. Increasing viscosity or friction reduces circumferential slip and, in general, increases the residence time of a particle in the cone. The residence time is practically insensitive to the inlet velocity. However, if the cone angle is very close to the friction angle then the residence time is extremely sensitive to the relative magnitude of these angles. © 2011 Authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 8π spectrometer at TRIUMF-ISAC consists of 20 Compton-suppressed germanium detectors and various auxiliary devices. The Ge array, once used for studies of nuclei at high angular momentum, has been transformed into the world's most powerful device dedicated to radioactive-decay studies. Many improvements in the spectrometer have been made, including a high-throughput data acquisition system, installation of a moving tape collector, incorporation of an array of 20 plastic scintillators for β-particle tagging, 5 Si(Li) detectors for conversion electrons, and 10 BaF2 detectors for fast-lifetime measurements. Experiments can be performed where data from all detectors are collected simultaneously, resulting in a very detailed view of the nucleus through radioactive decay. A number of experimental programmes have been launched that take advantage of the versatility of the spectrometer, and the intense beams available at TRIUMF-ISAC. © 2006 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic structure, Zeeman splitting, and Stark shift of In1-yMnyAs1-xNx oblate quantum dots are studied using the ten-band k center dot p model including the sp-d exchange interaction between the carriers and the magnetic ion. The Zeeman splitting of the electron ground states is almost isotropic. The Zeeman splitting of the hole ground states is highly anisotropic, with an anisotropy factor of 918 at B=0.1 T. The Zeeman splittings of some of the electron and hole excited states are also highly anisotropic. It is because of the spin-orbit coupling which couples the spin states with the anisotropic space-wave functions due to the anisotropic shape. It is found that when the magnetic quantum number of total orbital angular momentum is nearly zero, the spin states couple with the space-wave functions very little, and the Zeeman splitting is isotropic. Conversely, if the magnetic quantum number of total orbital angular momentum is not zero, the space-wave functions in the degenerate states are different, and the Zeeman splitting is highly anisotropic. The electron and hole Stark shifts of oblate quantum dots are also highly anisotropic. The decrease of band gap with increasing nitrogen composition is much more obvious in the smaller radius case because the lowest conduction level is increased by the quantum confinement effect and is closer to the nitrogen level. (C) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the framework of the effective-mass and adiabatic approximations, by setting the effective-mass of electron in the quantum disks (QDs) different from that in the potential barrier material, we make some improvements in the calculation of the electronic energy levels of vertically stacked self-assembled InAs QD. Comparing with the results when an empirical value was adopted as the effective-mass of electron of the system, we can see that the higher levels become heightened. Furthermore, the Stark shifts of the system of different methods are compared. The Stark shifts of holes are also studied. The vertical electric field changes the splitting between the symmetric level and the antisymmetric one for the same angular momentum. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the electronic energy levels and probability distribution of vertically stacked self-assembled InAs quantum discs system in the presence of a vertically applied electric field. This field is found to increase the splitting between the symmetric and antisymmetric levels for the same angular momentum. The field along the direction from one disc to another affects the electronic energy levels similarly as that in the opposite direction because the two discs are identical. It is obvious from our calculation that the probability of finding an electron in one disc becomes larger when the field points from this disc to the other one.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic structure of quantum rings is studied in the framework of the effective-mass theory and the two dimensional hard wall approximation. In cases of both the absence and presence of a magnetic field the electron momenta of confined states and the Coulomb energies of two electrons are given as functions of the angular momentum, inner radius, and magnetic-field strength. By comparing with experiments it is found that the width of the real confinement potential is 14 nm, much smaller than the phenomenal width. The Coulomb energy of two electrons is calculated as 11.1 meV. The quantum waveguide transport properties of Aharonov-Bohm (AB) rings are studied complementarily, and it is found that the correspondence of the positions of resonant peaks in AB rings and the momentum of confined states in closed rings is good for thin rings, representing a type of resonant tunneling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of rotation-alignment of quasiparticles probes sensitively the properties of high-j intruder orbits. The distribution of very-high-j orbits, which are consequences of the fundamental spin-orbit interaction, links with the important question of single-particle levels in superheavy nuclei. With the deformed single-particle states generated by the standard Nilsson potential, we perform Projected Shell Model calculations for transfermium nuclei where detailed spectroscopy experiments are currently possible. Specifically, we study the systematical behavior of rotation-alignment and associated band-crossing phenomenon in Cf, Fm, and No isotopes. Neutrons and protons from the high-j orbits are found to compete strongly in rotation-alignment, which gives rise to testable effects. Observation of these effects will provide direct information on the single-particle states in the heaviest nuclear mass region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A standard in-beam gamma-spectroscopy experiment for Pt-188 is performed via the Yb-176(O-18, 6n) reaction at beam energies of 88 and 95 MeV, and the level scheme for (188) Pt is established. Prolate and oblate shape coexistence has been demonstrated to occur in Pt-188 by applying the projected shell model. The rotation alignment of i(13/2) neutrons drives the yrast sequence changing suddenly from prolate to oblate shape at angular momentum 10th, indicating likely a new type of shape phase transition along the yrast line in Pt-188.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The generalized liquid drop model (GLDM), including the proximity effects and centrifugal potential, and the cluster model with Cosh potential are used to study the half-lives of some Z=113 isotopes and their alpha-decay products.The experimental half-lives of (284)113, (283)113, (282)113and their alpha-decay products are well reproduced by the two models when zero angular momenta transfer is assumed. For (278)113 and its alpha-decay products, both the GLDM andthe cluster model could provide satisfactory results if we assume the alpha particle carry five units of angular momenta, which indicates that possible non zero angular momenta transfer and need further experimental measurements with high precision. Finally, we show that half-lives of alpha-decay are quite sensitive to the angular momentum transfers, and a formula could be used to describe the correlation between alpha-decay half-life and angular momentum transfer successfully.