991 resultados para nuclear import pathway


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate the expression of NF-kappa B pathway genes in total bone marrow samples obtained from MM at diagnosis using real-time quantitative PCR and to evaluate its possible correlation with disease clinical features and survival. Material and methods: Expression of eight genes related to NF-kappa B pathway (NFKB1, IKB, RANK, RANKL, OPG, IL6, VCAM1 and ICAM1) were studied in 53 bone marrow samples from newly diagnosed MM patients and in seven normal controls, using the Taqman system. Genes were considered overexpressed when tumor expression level was at least four times higher than that observed in normal samples. Results: The percentages of overexpression of the eight genes were: NFKB1 0%, IKB 22.6%, RANK 15.1%, RANKL 31.3%, OPG 7.5%, IL6 39.6%, VCAM1 10% and ICAM1 26%. We found association between IL6 expression level and International Staging System (ISS) (p = 0.01), meaning that MM patients with high ISS scores have more chance of overexpression of IL6. The mean value of ICAM1 relative expression was also associated with the ISS score (p = 0.02). Regarding OS, cases with IL6 overexpression present worse evolution than cases with IL6 normal expression (p = 0.04). Conclusion: We demonstrated that total bone marrow aspirates can be used as a source of material for gene expression studies in MM. In this context, we confirmed that IL6 overexpression was significantly associated with worse survival and we described that it is associated with high ISS scores. Also, ICAM1 was overexpressed in 26% of cases and its level was associated with ISS scores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappaB (NF-kappa B) signaling pathway of murine peritoneal macrophages. Since glutamine is essential for the normal functioning of macrophages, it was hypothesized that in vitro glutamine supplementation would increase NF-kappa B activation. Peritoneal macrophages were pretreated with glutamine (0, 0.6, 2 and 10 mM) before incubation with lipopolysaccharide (LPS), and the effects of glutamine on the production of tumor necrosis factor-alpha and on the expression and activity of proteins involved in the NF-kappa B signaling pathway were studied by an enzyme linked immuno-sorbent assay, Western blotting, and an electrophoretic mobility shift assay. Glutamine treatment (2 and 10 mM) increased the activation of NF-kappa B in LPS-stimulated peritoneal macrophages (P < 0.05). In non-stimulated cells, glutamine treatment (2 and 10 mM) significantly reduced I kappa B-alpha protein expression (P < 0.05). Glutamine modulates NF-kappa B signaling pathway by reducing the level of I kappa B-alpha, leading to an increase in NF-kappa B within the nucleus in peritoneal macrophages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three novel members of the Xenopus nuclear hormone receptor superfamily have been cloned. They are related to each other and similar to the group of receptors that includes those for thyroid hormones, retinoids, and vitamin D3. Their transcriptional activity is regulated by agents causing peroxisome proliferation and carcinogenesis in rodent liver. All three Xenopus receptors activate the promoter of the acyl coenzyme A oxidase gene, which encodes the key enzyme of peroxisomal fatty acid beta-oxidation, via a cognate response element that has been identified. Therefore, peroxisome proliferators may exert their hypolipidemic effects through these receptors, which stimulate the peroxisomal degradation of fatty acids. Finally, the multiplicity of these receptors suggests the existence of hitherto unknown cellular signaling pathways for xenobiotics and putative endogenous ligands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are lipid-activated transcription factors that belong to the steroid/thyroid/retinoic acid receptor superfamily. All their characterized target genes encode proteins that participate in lipid homeostasis. The recent finding that antidiabetic thiazolidinediones and adipogenic prostanoids are ligands of one of the PPARs reveals a novel signaling pathway that directly links these compounds to processes involved in glucose homeostasis and lipid metabolism including adipocyte differentiation. A detailed understanding of this pathway could designate PPARs as targets for the development of novel efficient treatments for several metabolic disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activation of the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway is known to play a key role in cardiogenesis and to afford cardioprotection against ischemia-reperfusion in adult. However, involvement of JAK2/STAT3 pathway and its interaction with other signaling pathways in developing heart transiently submitted to anoxia remains to be explored. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (80 min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor AG490 or the PhosphoInositide-3-Kinase (PI3K)/Akt inhibitor LY-294002. Time course of phosphorylation of STAT3α(tyrosine705) and Reperfusion Injury Salvage Kinase (RISK) proteins [PI3K, Akt, Glycogen Synthase Kinase 3beta (GSK3beta), Extracellular signal-Regulated Kinase 2 (ERK2)] was determined in homogenate and in enriched nuclear and cytoplasmic fractions of the ventricle. STAT3 DNA-binding was determined. The chrono-, dromo- and inotropic disturbances were also investigated by electrocardiogram and mechanical recordings. Phosphorylation of STAT3α(tyr705) was increased by reoxygenation, reduced (~50%) by MPG or AG490 but not affected by LY-294002. STAT3 and GSK3beta were detected both in nuclear and cytoplasmic fractions while PI3K, Akt and ERK2 were restricted to cytoplasm. Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA-binding. AG490 decreased the reoxygenation-induced phosphorylation of Akt and ERK2 and phosphorylation/inhibition of GSK3beta in the nucleus, exclusively. Inhibition of JAK2/STAT3 delayed recovery of atrial rate, worsened variability of cardiac cycle length and prolonged arrhythmias as compared to control hearts. Thus, besides its nuclear translocation without transcriptional activity, oxyradicals-activated STAT3α can rapidly interact with RISK proteins present in nucleus and cytoplasm, without dual interaction, and reduce the anoxia-reoxygenation-induced arrhythmias in the embryonic heart.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4 (HNF-4 ) as a novel regulator of human apoAV gene. Inhibition of HNF-4 expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4 directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4 consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor- coactivator-1 was capable of stimulating the HNF-4 -dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4 . Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4 gene revealed a species-distinct regulation of apoAV by HNF-4 , which resembles that of a subset of HNF-4 target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4 and underscore the role of HNF-4 in regulating triglyceride metabolism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Amyloid P-peptide (A beta) likely causes functional alterations in neurons well prior to their death. Nuclear factor-kappa B (NF-kappa B), a transcription factor that is known to play important roles in cell survival and apoptosis, has been shown to be modulated by A beta in neurons and glia, but the mechanism is unknown. Because A beta has also been shown to enhance activation of N-methyl-D-aspartate (NMDA) receptors, we investigated the role of NMDA receptor-mediated intracellular signaling pathways in A beta-induced NF-kappa B activation in primary cultured rat cerebellar cells. Cells were treated with different concentrations of A beta 1-40 (1 or 2 mu M) for different periods (6, 12, or 24 hr). MK-801 (NMDA antagonist), manumycin A and FTase inhibitor 1 (farnesyltransferase inhibitors), PP1 (Src-family tyrosine kinase inhibitor), PD98059 [mitogen-activated protein kinase (MAPK) inhibitor], and LY294002 [phosphatidylinositol 3-kinase (PI3-k) inhibitor] were added 20 min before A beta treatment of the cells. A beta induced a time- and concentration-dependent activation of NF-kappa B (1 mu M, 12 hr); both p50/p65 and p50/p50 NF-kappa B dimers were involved. This activation was abolished by MK-801 and attenuated by manumycin A, FTase inhibitor 1, PP1, PD98059, and LY294002. AP at 1 mu M increased the expression of inhibitory protein I kappa B, brain-derived neurotrophic factor, inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1 beta as shown by RTPCR assays. Collectively, these findings suggest that AP activates NF-kappa B by an NMDA-Src-Ras-like protein through MAPK and PI3-k pathways in cultured cerebellar cells. This pathway may mediate an adaptive, neuroprotective response to A beta. (c) 2007 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective. The aim of this study was to investigate the effect of CAPE on the insulin signaling and inflammatory pathway in the liver of mice with high fat diet induced obesity. Material/Methods. Swiss mice were fed with standard chow or high-fat diet for 12-week. After the eighth week, animals in the HFD group with serum glucose levels higher than 200 mg/dL were divided into two groups, HFD and HFD receiving 30 mg/kg of CAPE for 4 weeks. After 12 weeks, the blood samples could be collected and liver tissue extracted for hormonal and biochemical measurements, and insulin signaling and inflammatory pathway analyzes. Results. The high-fat diet group exhibited more weight gain, glucose intolerance, and hepatic steatosis compared with standard diet group. The CAPE treatment showed improvement in glucose sensitivity characterized by an area under glucose curve similar to the control group in an oral glucose tolerance test Furthermore, CAPE treatment promoted amelioration in hepatic steatosis compared with the high-fat diet group. The increase in glucose sensitivity was associated with the improvement in insulin-stimulated phosphorylation of the insulin receptor substrate-2, followed by an increase in Akt phosphorylation. In addition, it was observed that CAPE reduced the induction of the inflammatory pathway, c-jun-N- terminal kinase, the nuclear factor kappa B, and cyclooxygenase-2 expression, respectively. Conclusions. Overall, these findings indicate that CAPE exhibited anti-inflammatory activity that partly restores normal metabolism, reduces the molecular changes observed in obesity and insulin resistance, and therefore has a potential as a therapeutic agent in obesity. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

LRP1 modulates APP trafficking and metabolism within compartments of the secretory pathway The amyloid precursor protein (APP) is the parent protein to the amyloid beta peptide (Abeta) and is a central player in Alzheimer’s disease (AD) pathology. Abeta liberation depends on APP cleavage by beta- and gamma-secretases. To date, only a unilateral view of APP processing exists, excluding other proteins, which might be transported together and/or processed dependent on each other by the secretases described above. The low density lipoprotein receptor related protein 1 (LRP1) was shown to function as such a mediator of APP processing at multiple steps. Newly synthesized LRP1 can interact with APP, implying an interaction between these two proteins early in the secretory pathway. Therefore, we wanted to investigate whether LRP1 can mediate APP trafficking along the secretory pathway, and, if so, whether it affects APP processing. Indeed, we demonstrate that APP trafficking is strongly influenced by LRP1 transport through the endoplasmic reticulum (ER) and Golgi compartments. LRP1-constructs with ER- and Golgi-retention motifs (LRP-CT KKAA, LRP-CT KKFF) had the capacity to retard APP trafficking at the respective steps in the secretory pathway. Here, we provide evidence that APP metabolism occurs in close conjunction with LRP1 trafficking, highlighting a new role of lipoprotein receptors in neurodegenerative diseases. Increased AICD generation is ineffective in nuclear translocation and transcriptional activity A sequence of amyloid precursor protein (APP) cleavages gives rise to the APP intracellular domain (AICD) together with amyloid beta peptide (Abeta) and/or p3 fragment. One of the environmental factors identified favouring the accumulation of AICD appears to be a rise in intracellular pH. This accumulation is a result of an abrogated cleavage event and does not extend to other secretase substrates. AICD can activate the transcription of artificially expressed constructs and many downstream gene targets have been discussed. Here we further identified the metabolism and subcellular localization of the constructs used in this well documented gene reporter assay. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely that cleaved from C83. Furthermore, the AICD surplus is not transcriptionally active but rather remains membrane tethered and free in the cytosol where it interacts with Fe65. However, Fe65 is still essential in AICD mediated transcriptional transactivation although its exact role in this set of events is unclear.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Aggregation of growth hormone (GH) required for its proper storage in granules is facilitated by zinc (Zn(2+)) transported by specific zinc transporters in and out of the regulated secretory pathway. Slc30a5 (ZnT5) was reported to have the highest gene expression among all zinc transporters in primary mouse pituitary cells while ZnT5-null mice presented with abnormal bone development and impaired growth compared to wild-type counterparts. METHODS In vitro studies performed in GH3 cells, a rat pituitary cell line that endogenously produces rat GH (rGH), included analysis of: cytoplasmic Zn(2+) pool changes after altering rSlc30a5 expression (luciferase assay), rZnT5 association with different compartments of the regulated secretory pathway (confocal microscopy), and the rGH secretion after rSlc30a5 knock-down (Western blot). RESULTS Confocal microscopy demonstrated high co-localization of rZnT5 with ER and Golgi (early secretory pathway) while siRNA-mediated knock-down of rSlc30a5 gene expression led to a significant reduction in rGH secretion. Furthermore, altered expression of rSlc30a5 (knock-down/overexpression) evoked changes in the cytoplasmic Zn(2+) pool indicating its important role in mediating Zn(2+) influx into intracellular compartments of the regulated secretory pathway. CONCLUSION Taken together, these results suggest that ZnT5 might play an important role in regulated GH secretion that is much greater than previously anticipated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5'UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mitochondrial protein import is an essential function of the unique mitochondrion in T. brucei as roughly 1000 different nuclear encoded proteins need to be correctly localized to their mitochondrial subcompartment. For this reason the responsible import machinery is expected to be similarly complex as in other Eukaryotes. This was recently demonstrated for the translocation machinery in the outer mitochondrial membrane. In contrast, the composition of the inner membrane import machinery and the exact molecular pathway(s) taken by various substrates are still ill-defined. To elucidate this further, we performed a pulldown analysis of epitope tagged TbTim17 in combination with quantitative mass spectrometry. By this we identified novel components of the mitochondrial import machinery in trypanosomes. One of these, TimX, is an essential mitochondrial membrane protein of 42 kDa that is unique to kinetoplastids. This protein migrates on Blue Native PAGE in a high molecular weight complex similar to TbTim17. Ablation of either of the two proteins leads to a destabilization of the complex containing the other protein. Furthermore, its involvement in protein import could be demonstrated by in vivo and in vitro protein import assays. This corroborates that TimX together with TbTim17 forms a protein import complex in the inner mitochondrial membrane. As TbTim17 the TimX protein was subjected to pulldown analysis in combination with quantitative mass spectrometry. The overlap of candidates defined by these two sets of IPs likely defines further components of the inner membrane translocase which are presently being analyzed. In summary our study on novel components of the trypanosome mitochondrial protein import system gives us fascinating new insights into evolution of the mitochondrion.