863 resultados para nozzle shapes
Resumo:
Regulation of auxin distribution by PIN transporters is key in the dynamic modulation of root growth and branching. Three novel papers shed light on an intricate network through which several hormones and transcriptional regulators collectively fine-tune the transcriptional level of these auxin transporters in the root.
Resumo:
Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature.
Resumo:
An analysis of a stretch of coastline shows multiple alterations through environmental climate actions. The narrow, fragile line displays singularities due to three basic causes. The first is the discontinuity in feed or localised loss of solid coastal material. Called massics, their simplest examples are deltas and undersea canyons. The second is due to a brusque change in the alignment of the shoreline’s edge, headlands, groins, harbour and defence works. Given the name of geometric singularities, their simplest uses are artificial beaches in the shelter of a straight groin or spits. The third is due to littoral dynamics, emerged or submerged obstacles which diffract and refract wave action, causing a change in the sea level’s super-elevation in breaker areas. Called dynamics, the simplest examples are salients, tombolos and shells. Discussion of the causes giving rise to variations in the coastline and formation of singularities is the raison d’être of investigation, using actual cases to check the suitability of the classification proposed, the tangential or differential action of waves on the coastal landscape in addition to possible simple, compound and complex shapes detected in nature, both in erosion and deposit processes
Resumo:
La acumulación de material sólido en embalses, cauces fluviales y en zonas marítimas hace que la extracción mecánica de estos materiales por medio de succión sea cada vez mas frecuente, por ello resulta importante estudiar el rendimiento de la succión de estos materiales analizando la forma de las boquillas y los parámetros del flujo incluyendo la bomba. Esta tesis estudia, mediante equipos experimentales, la eficacia de distintos dispositivos de extracción de sólidos (utilizando boquillas de diversas formas y bombas de velocidad variable). El dispositivo experimental ha sido desarrollado en el Laboratorio de Hidráulica de la E.T.S.I. de Caminos, C. y P. de la Universidad Politécnica de Madrid. Dicho dispositivo experimental incluye un lecho sumergido de distintos tipos de sedimentos, boquillas de extracción de sólidos y bomba de velocidad variable, así como un elemento de separación del agua y los sólidos extraídos. Los parámetros básicos analizados son el caudal líquido total bombeado, el caudal sólido extraído, diámetro de la tubería de succión, forma y sección de la boquilla extractora, así como los parámetros de velocidad y rendimiento en la bomba de velocidad variable. Los resultados de las medidas obtenidas en el dispositivo experimental han sido estudiados por medio del análisis dimensional y con métodos estadísticos. A partir de este estudio se ha desarrollado una nueva formulación, que relaciona el caudal sólido extraído con los diámetros de tubería y boquilla, caudal líquido bombeado y velocidad de giro de la bomba. Así mismo, desde el punto de vista práctico, se han analizado la influencia de la forma de la boquilla con la capacidad de extracción de sólidos a igualdad del resto de los parámetros, de forma que se puedan recomendar que forma de la boquilla es la más apropiada. The accumulation of solid material in reservoirs, river channels and sea areas causes the mechanical extraction of these materials by suction is becoming much more common, so it is important to study the performance of the suction of these materials analyzing the shape of the nozzles and flow parameters, including the pump. This thesis studies, using experimental equipment, the effectiveness of different solids removal devices (using nozzles of different shapes and variable speed pumps). The experimental device was developed at the Hydraulics Laboratory of the Civil University of the Polytechnic University of Madrid. The device included a submerged bed with different types of sediment solids, different removal nozzles and variable speed pump. It also includes a water separation element and the solids extracted. The key parameters analyzed are the total liquid volume pumped, the solid volume extracted, diameter of the suction pipe, a section of the nozzle and hood, and the parameters of speed and efficiency of the variable speed pump. The basic parameters analyzed are the total liquid volume pumped, the removed solid volume, the diameter of the suction pipe, the shape and cross-section of the nozzle, and the parameters of speed, efficiency and energy consumed by the variable speed pump. The measurements obtained on the experimental device have been studied with dimensional analysis and statistical methods. The outcome of this study is a new formulation, which relates the solid volume extracted with the pipe and nozzle diameters, the pumped liquid flow and the speed of the pump. Also, from a practical point of view, the influence of the shape of the nozzle was compared with the solid extraction capacity, keeping equal the rest of the parameters. So, a recommendation of the best shape of the nozzle can be given.
Resumo:
A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.
Resumo:
The single recombinant expressing the Streptomyces coelicolor minimal whiE (spore pigment) polyketide synthase (PKS) is uniquely capable of generating a large array of well more than 30 polyketides, many of which, so far, are novel to this recombinant. The characterized polyketides represent a diverse set of molecules that differ in size (chain length) and shape (cyclization pattern). This combinatorial biosynthetic library is, by far, the largest and most complex of its kind described to date and indicates that the minimal whiE PKS does not independently control polyketide chain length nor dictate the first cyclization event. Rather, the minimal PKS enzyme complex must rely on the stabilizing effects of additional subunits (i.e., the cyclase whiE-ORFVI) to ensure that the chain reaches the full 24 carbons and cyclizes correctly. This dramatic loss of control implies that the growing polyketide chain does not remain enzyme bound, resulting in the spontaneous cyclization of the methyl terminus. Among the six characterized dodecaketides, four different first-ring cyclization regiochemistries are represented, including C7/C12, C8/C13, C10/C15, and C13/C15. The dodecaketide TW93h possesses a unique 2,4-dioxaadamantane ring system and represents a new structural class of polyketides with no related structures isolated from natural or engineered organisms, thus supporting the claim that engineered biosynthesis is capable of producing novel chemotypes.
Resumo:
We thank all the supporting team-members involved in the translation procedures and data collections. Research was supported by the Polish NCN Grant 2011/03/N/HS6/05112 (K.K.) and Chinese NNSF Grant 31200788 (C.X).
Resumo:
Efficient and reliable classification of visual stimuli requires that their representations reside a low-dimensional and, therefore, computationally manageable feature space. We investigated the ability of the human visual system to derive such representations from the sensory input-a highly nontrivial task, given the million or so dimensions of the visual signal at its entry point to the cortex. In a series of experiments, subjects were presented with sets of parametrically defined shapes; the points in the common high-dimensional parameter space corresponding to the individual shapes formed regular planar (two-dimensional) patterns such as a triangle, a square, etc. We then used multidimensional scaling to arrange the shapes in planar configurations, dictated by their experimentally determined perceived similarities. The resulting configurations closely resembled the original arrangements of the stimuli in the parameter space. This achievement of the human visual system was replicated by a computational model derived from a theory of object representation in the brain, according to which similarities between objects, and not the geometry of each object, need to be faithfully represented.
Resumo:
A large part of the new generation of computer numerical control systems has adopted an architecture based on robotic systems. This architecture improves the implementation of many manufacturing processes in terms of flexibility, efficiency, accuracy and velocity. This paper presents a 4-axis robot tool based on a joint structure whose primary use is to perform complex machining shapes in some non-contact processes. A new dynamic visual controller is proposed in order to control the 4-axis joint structure, where image information is used in the control loop to guide the robot tool in the machining task. In addition, this controller eliminates the chaotic joint behavior which appears during tracking of the quasi-repetitive trajectories required in machining processes. Moreover, this robot tool can be coupled to a manipulator robot in order to form a multi-robot platform for complex manufacturing tasks. Therefore, the robot tool could perform a machining task using a piece grasped from the workspace by a manipulator robot. This manipulator robot could be guided by using visual information given by the robot tool, thereby obtaining an intelligent multi-robot platform controlled by only one camera.
Resumo:
Cover-title: Bethlehem manual of steel construction.
Resumo:
Caption title.