979 resultados para nonlinear boundary conditions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

After the extensive research on the capabilities of the Boundary Integral Equation Method produced during the past years the versatility of its applications has been well founded. Maybe the years to come will see the in-depth analysis of several conflictive points, for example, adaptive integration, solution of the system of equations, etc. This line is clear in academic research. In this paper we comment on the incidence of the manner of imposing the boundary conditions in 3-D coupled problems. Here the effects are particularly magnified: in the first place by the simple model used (constant elements) and secondly by the process of solution, i.e. first a potential problem is solved and then the results are used as data for an elasticity problem. The errors add to both processes and small disturbances, unimportant in separated problems, can produce serious errors in the final results. The specific problem we have chosen is especially interesting. Although more general cases (i.e. transient)can be treated, here the domain integrals can be converted into boundary ones and the influence of the manner in which boundary conditions are applied will reflect the whole importance of the problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper some aspects of the use of non-reflecting boundaries in dynamic problems, analyzed in time domain, are considered. Current trends for treating the above mentioned problems are summarized with a particular emphasis on the use of numerical techniques, such as Boundary Element Method (BEM) or mixed and hybrid formulations, Finite Element Method (FEM) plus BEM. As an alternative to these methods, an easy time domain boundary condition, obtained from the well known consistent transmitting boundary developed by Waas for frequency domain analysis, can be applied to represent the reactions of the unbounded soil on the interest zone. The behaviour of this proposed boundary condition is studied when waves of different frequency to the one used for its obtention are acting on the physical edge of the model. As an application example,an analysis is made of the soil-structure interaction of a rigid strip foundation on a horizontal non-linear elastic layer on bed rock. The results obtained suggest the need of time domain solutions for this type of problem

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In pre-surgery decisions in hospital emergency cases, fast and reliable results of the solid and fluid mechanics problems are of great interest to clinicians. In the current investigation, an iterative process based on a pressure-type boundary condition is proposed in order to reduce the computational costs of blood flow simulations in arteries, without losing control of the important clinical parameters. The incorporation of cardiovascular autoregulation, together with the well-known impedance boundary condition, forms the basis of the proposed methodology. With autoregulation, the instabilities associated with conventional pressure-type or impedance boundary conditions are avoided without an excessive increase in computational costs. The general behaviour of pulsatile blood flow in arteries, which is important from the clinical point of view, is well reproduced through this new methodology. In addition, the interaction between the blood and the arterial walls occurs via a modified weak coupling, which makes the simulation more stable and computationally efficient. Based on in vitro experiments, the hyperelastic behaviour of the wall is characterised and modelled. The applications and benefits of the proposed pressure-type boundary condition are shown in a model of an idealised aortic arch with and without an ascending aorta dissection, which is a common cardiovascular disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical solution of the time dependent wave equation in an unbounded domain generally leads to a truncation of this domain, which requires the introduction of an artificial boundary with associated boundary conditions. Such nonreflecting conditions ensure the equivalence between the solution of the original problem in the unbounded region and the solution inside the artificial boundary. We consider the acoustic wave equation and derive exact transparent boundary conditions that are local in time and can be directly used in explicit methods. These conditions annihilate wave harmonics up to a given order on a spherical artificial boundary, and we show how to combine the derived boundary condition with a finite difference method. The analysis is complemented by a numerical example in two spatial dimensions that illustrates the usefulness and accuracy of transparent boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The boundary element method (BEM) was used to study galvanic corrosion using linear and logarithmic boundary conditions. The linear boundary condition was implemented by using the linear approach and the piecewise linear approach. The logarithmic boundary condition was implemented by the piecewise linear approach. The calculated potential and current density distribution were compared with the prior analytical results. For the linear boundary condition, the BEASY program using the linear approach and the piecewise linear approach gave accurate predictions of the potential and the galvanic current density distributions for varied electrolyte conditions, various film thicknesses, various electrolyte conductivities and various area ratio of anode/cathode. The 50-point piecewise linear method could be used with both linear and logarithmic polarization curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the box shape on the dynamic behavior of proteins simulated under periodic boundary conditions is evaluated. In particular, the influence of simulation boxes defined by the near-densest lattice packing (NDLP) in conjunction with rotational constraints is compared to that of standard box types without these constraints. Three different proteins of varying size, shape, and secondary structure content were examined in the study. The statistical significance of differences in RMSD, radius of gyration, solvent-accessible surface, number of hydrogen bonds, and secondary structure content between proteins, box types, and the application or not of rotational constraints has been assessed. Furthermore, the differences in the collective modes for each protein between different boxes and the application or not of rotational constraints have been examined. In total 105 simulations were performed, and the results compared using a three-way multivariate analysis of variance (MANOVA) for properties derived from the trajectories and a three-way univariate analysis of variance (ANOVA) for collective modes. It is shown that application of roto-translational constraints does not have a statistically significant effect on the results obtained from the different simulations. However, the choice of simulation box was found to have a small (5-10%), but statistically significant effect on the behavior of two of the three proteins included in the study. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents closed form solutions for fully developed temperature distribution and entropy generation due to forced convection in microelectromechanical systems (MEMS) in the Slip-flow regime, for which the Knudsen number lies within the range 0.001

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following thesis instigates the discussion on corporate social responsibility (CSR) through a review of literature on the conceptualisation, determinants, and remunerations of organisational CSR engagement. The case is made for the need to draw attention to the micro-levels of CSR, and consequently focus on employee social responsibility at multiple levels of analysis. In order to further research efforts in this area, the prerequisite of an employee social responsibility behavioural measurement tool is acknowledged. Accordingly, the subsequent chapters outline the process of scale development and validation, resulting in a robust, reliable and valid employee social responsibility scale. This scale is then put to use in a field study, and the noteworthy roles of the antecedent and boundary conditions of transformational leadership, assigned CSR priority, and CSR climate are confirmed at the group and individual level. Directionality of these relationships is subsequently alluded to in a time-lagged investigation, set within a simulated business environment. The thesis collates and discusses the contributions of the findings from the research series, which highlight a consistent three-way interaction effect of transformational leadership, assigned CSR priority and CSR climate. Specifically, efforts are made to outline various avenues for future research, given the infancy of the micro-level study of employee social responsibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS, ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33 (primary), 35S15

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 37K40, 35Q15, 35Q51, 37K15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a review of the servant leadership, well-being, and performance literatures, the first study develops a research model that examines how and under which conditions servant leadership is related to follower performance and well-being alike. Data was collected from 33 leaders and 86 of their followers working in six organizations. Multilevel moderated mediation analyses revealed that servant leadership was indeed related to eudaimonic well-being and lead-er-rated performance via followers’ positive psychological capital, but that the strength and di-rection of the examined relationships depended on organizational policies and practices promot-ing employee health, and in the case of follower performance on a developmental team climate, shedding light on the importance of the context in which servant leadership takes place. In addi-tion, two more research questions resulted from a review of the training literature, namely how and under which conditions servant leadership can be trained, and whether follower performance and well-being follow from servant leadership enhanced by training. We subsequently designed a servant leadership training and conducted a longitudinal field experiment to examine our sec-ond research question. Analyses were based on data from 38 leaders randomly assigned to a training or control condition, and 91 of their followers in 36 teams. Hierarchical linear modeling results showed that the training, which addressed the knowledge of, attitudes towards, and ability to apply servant leadership, positively affected leader and follower perceptions of servant leader-ship, but in the latter case only when leaders strongly identified with their team. These findings provide causal evidence as to how and when servant leadership can be effectively developed. Fi-nally, the research model of Study 1 was replicated in a third study based on 58 followers in 32 teams drawn from the same population used for Study 2, confirming that follower eudaimonic well-being and leader-rated performance follow from developing servant leadership via increases in psychological capital, and thus establishing the directionality of the examined relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational fluid dynamic (CFD) studies of blood flow in cerebrovascular aneurysms have potential to improve patient treatment planning by enabling clinicians and engineers to model patient-specific geometries and compute predictors and risks prior to neurovascular intervention. However, the use of patient-specific computational models in clinical settings is unfeasible due to their complexity, computationally intensive and time-consuming nature. An important factor contributing to this challenge is the choice of outlet boundary conditions, which often involves a trade-off between physiological accuracy, patient-specificity, simplicity and speed. In this study, we analyze how resistance and impedance outlet boundary conditions affect blood flow velocities, wall shear stresses and pressure distributions in a patient-specific model of a cerebrovascular aneurysm. We also use geometrical manipulation techniques to obtain a model of the patient’s vasculature prior to aneurysm development, and study how forces and stresses may have been involved in the initiation of aneurysm growth. Our CFD results show that the nature of the prescribed outlet boundary conditions is not as important as the relative distributions of blood flow through each outlet branch. As long as the appropriate parameters are chosen to keep these flow distributions consistent with physiology, resistance boundary conditions, which are simpler, easier to use and more practical than their impedance counterparts, are sufficient to study aneurysm pathophysiology, since they predict very similar wall shear stresses, time-averaged wall shear stresses, time-averaged pressures, and blood flow patterns and velocities. The only situations where the use of impedance boundary conditions should be prioritized is if pressure waveforms are being analyzed, or if local pressure distributions are being evaluated at specific time points, especially at peak systole, where the use of resistance boundary conditions leads to unnaturally large pressure pulses. In addition, we show that in this specific patient, the region of the blood vessel where the neck of the aneurysm developed was subject to abnormally high wall shear stresses, and that regions surrounding blebs on the aneurysmal surface were subject to low, oscillatory wall shear stresses. Computational models using resistance outlet boundary conditions may be suitable to study patient-specific aneurysm progression in a clinical setting, although several other challenges must be addressed before these tools can be applied clinically.