887 resultados para non-native macrophytes


Relevância:

80.00% 80.00%

Publicador:

Resumo:

How often do students tell us they are frustrated at being unable to express themselves, and more specifically, their true, deep and complex thoughts? We reassure them that language learning takes time, and that, with concerted effort, they will learn English. And mostly they do, but being able to fulfil various forms of academic assessment does not necessarily mean that non-native speakers can express, to their complete satisfaction, the depth and subtleties of their true thoughts and feelings such as is possible in their own language. Neuro-linguistic programming (NLP) is making an impact on English language teaching, and may just offer one solution to this problem. By drawing upon the notion of preferred representational systems, this paper suggests that expressing oneself with satisfaction may be as simple as understanding how one processes and stores information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Australia, the spread and dominance of non-native plant species has been identified as a serious threat to rangeland biodiversity and ecosystem functioning. Rangelands extend over 70% of Australia’s land mass or more than 6 million km2. These rangelands consist of a diverse set of ecosystems including grasslands, shrub-lands, and woodlands spanning numerous climatic zones, ranging from arid to mesic. Because of the high economic, social, and environmental values, sustainable management of these vast landscapes is critical for Australia’s future. More than 2 million people live in these areas and major industries are ranching, mining, and tourism. In terms of biodiversity values, 53 of 85 of Australia’s biogeographical regions and 5 of 15 identified biodiversity hotspots are found in rangelands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular and morphological data indicate that the pest thrips damaging Myoporum species in California and Hawai'i, Klambothrips myoporiMound and Morris, originated in Tasmania, Australia. This trans-Pacific dispersal presumably resulted from the international horticultural trade in Myoporum species. The data distinguish the pest from K. adelaideae sp.n. that induces leaf deformation on M. insulare along the coast of mainland Australia that is separated by ∼300km from Tasmania by the Bass Strait. K. myopori is more damaging to its non-native hosts in California and Hawai'i than to M. insulare in Tasmania, and further research is needed to determine if this is the result of release from its natural enemies. However, in certain areas of California, some Myoporum species are invasive weeds, and K. myopori may be considered an example of an accidental but beneficial introduction in this instance because of its detrimental impact on the plant species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The properties and toxicity of untreatedwastewater at Davis Station, East Antarctica,were investigated to inform decisions regarding the appropriate level of treatment for local discharge purposes and more generally, to better understand the risk associated with dispersal and impact of wastewaters in Antarctica. Suspended solids, nutrients (nitrogen, phosphorus), biological oxygen demand (BOD), metals, organic contaminants, surfactants and microbiological load were measured at various locations throughout the wastewater discharge system. Wastewater quality and properties varied greatly between buildings on station, each ofwhich has separate holding tanks. Nutrients, BOD and settleable solid levelswere higher than standard municipal wastewaters. Microbiological loads were typical of untreated wastewater. Contaminants detected in the wastewater included metals and persistent organic compounds, mainly polybrominated diphenyl ethers (PBDEs). The toxicity of wastewater was also investigated in laboratory bioassays using two local Antarctic marine invertebrates, the amphipod Paramoera walkeri and the microgastropod Skenella paludionoides. Animals were exposed to a range of wastewater concentrations from3% to 68% (test 1) or 63% (test 2) over 21 days with survival monitored daily. Significant mortality occurred in all concentrations of wastewater after 14 to 21 days, and at higher concentrations (50–68% wastewater) mortality occurred after only one day. Results indicate that the local receiving marine environment at Davis Station is at risk from existing wastewater discharges, and that advanced treatment is required both to remove contaminants shown to cause toxicity to biota, as well as to reduce the environmental risks associated with non-native micro-organisms in wastewater.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite recognition that non-native plant species represent a substantial risk to natural systems, there is currently no compilation of weeds that impact on the biodiversity of the rangelands within Australia. Using published and expert knowledge, this paper presents a list of 622 non-native naturalised species known to occur within the rangelands. Of these, 160 species (26%) are considered a current threat to rangeland biodiversity. Most of these plant species have been deliberately introduced for forage or other commercial use (e.g. nursery trade). Among growth forms, shrubs and perennial grasses comprise over 50% of species that pose the greatest risk to rangeland biodiversity. We identify regions within the rangelands containing both high biodiversity values and a high proportion of weeds and recommend these areas as priorities for weed management. Finally, we examine the resources available for weed detection and identification since detecting weeds in the early stages of invasion is the most cost effective method of reducing further impact.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thaumastocoris peregrinus is a recently introduced invertebrate pest of non-native Eucalyptus plantations in the Southern Hemisphere. It was first reported from South Africa in 2003 and in Argentina in 2005. Since then, populations have grown explosively and it has attained an almost ubiquitous distribution over several regions in South Africa on 26 Eucalyptus species. Here we address three key questions regarding this invasion, namely whether only one species has been introduced, whether there were single or multiple introductions into South Africa and South America and what the source of the introduction might have been. To answer these questions, bar-coding using mitochondrial DNA (COI) sequence diversity was used to characterise the populations of this insect from Australia, Argentina, Brazil, South Africa and Uruguay. Analyses revealed three cryptic species in Australia, of which only T. peregrinus is represented in South Africa and South America. Thaumastocoris peregrinus populations contained eight haplotypes, with a pairwise nucleotide distance of 0.2-0.9% from seventeen locations in Australia. Three of these haplotypes are shared with populations in South America and South Africa, but the latter regions do not share haplotypes. These data, together with the current distribution of the haplotypes and the known direction of original spread in these regions, suggest that at least three distinct introductions of the insect occurred in South Africa and South America before 2005. The two most common haplotypes in Sydney, one of which was also found in Brisbane, are shared with the non-native regions. Sydney populations of T. peregrinus, which have regularly reached outbreak levels in recent years, might thus have served as source of these three distinct introductions into other regions of the Southern Hemisphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: Resolving the origin of invasive plant species is important for understanding the introduction histories of successful invaders and aiding strategies aimed at their management. This study aimed to infer the number and origin(s) of introduction for the globally invasive species, Macfadyena unguis-cati and Jatropha gossypiifolia using molecular data. Location: Native range: Neotropics; Invaded range: North America, Africa, Europe, Asia, Pacific Islands and Australia. Methods: We used chloroplast microsatellites (cpSSRs) to elucidate the origin(s) of introduced populations and calculated the genetic diversity in native and introduced regions. Results: Strong genetic structure was found within the native range of M. unguis-cati, but no genetic structuring was evident in the native range of J. gossypiifolia. Overall, 27 haplotypes were found in the native range of M. unguis-cati. Only four haplotypes were found in the introduced range, with more than 96% of introduced specimens matching a haplotype from Paraguay. In contrast, 15 haplotypes were found in the introduced range of J. gossypiifolia, with all invasive populations, except New Caledonia, comprising multiple haplotypes. Main conclusions: These data show that two invasive plant species from the same native range have had vastly different introduction histories in their non-native ranges. Invasive populations of M. unguis-cati probably came from a single or few independent introductions, whereas most invasive J. gossypiifolia populations arose from multiple introductions or alternatively from a representative sample of genetic diversity from a panmictic native range. As introduced M. unguis-cati populations are dominated by a single haplotype, locally adapted natural enemies should make the best control agents. However, invasive populations of J. gossypiifolia are genetically diverse and the selection of bio-control agents will be considerably more complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite progress in conventional cancer treatment regimes, metastatic disease essentially remains incurable and new treatment alternatives are needed. Virotherapy is a relatively novel approach in cancer treatment. It harnesses the natural ability of oncolytic viruses to kill the cells they proliferate in and to spread to neighboring cells, thereby amplifying the therapeutic effect of the initial input dose. The use of replicating, oncolytic viruses for cancer treatment necessitates introduction of various genetic modifications to the viral genome, thereby restraining replication exclusively to tumor cells and eventually obtaining selective eradication of the tumor without side effects to healthy tissue. Furthermore, various modifications can be applied to the viral capsid in hope of gaining effective transduction of target tissue. In other words, the entry of viruses into tumor tissue can be augmented by allowing the virus to utilize non-native receptors for entry. Genetic capsid modifications may also help to avoid some major hurdles in systemic delivery that ultimately lead to the rapid clearance of the virus from the blood and virus induced toxicity. In addition to genetic modifications that alter the phenotype of the virus, some pharmacologic agents may be utilized to enhance the virus entry to target site. Liver kupffer cells (KC) are responsible for the majority of viral clearance after systemic viral delivery and they play a major role in adenovirus induced acute toxicity. The therapeutic window could possibly be widened by transiently depleting KCs, allowing smaller viral input doses and diminishing KC related toxicity. The transductional efficacy of various capsid modified viruses was analyzed in vitro and in vivo in murine orthotopic breast cancer model. The effect of capsid modifications on the oncolytic efficacy, i.e. the ability of the viruses to kill cancer cells, was evaluated in vitro and in vivo in murine cancer models. We concluded that capsid modifications result in transductional enhancement, and that enhanced transduction translates into more potent oncolysis in vitro and in vivo. When KC depleting agents were used in vivo prior to viral injections, enhanced tumor transduction was seen, but this effect was not translated into enhanced antitumor activity. Transcriptional regulation of replicative oncolytic viruses is a prerequisite for virotherapy. Tumor or tissue specific promoters can be used to control the transcription of adenoviral early genes to gain cancer specific viral replication. Specific deletions in viral regions essential for virus replication in normal cells can further increase the safety by allowing viral genome replication in cancer cells featuring specific mutations. Genetically modified viruses were shown to be able to kill putative cancer stem cells that are thought to be responsible for post treatment relapses and metastasis. Further, pharmacologic intervention reduced viral replication and thereby might offer an additional safety switch in case viral replication related side effects are encountered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February-April) for the Pretoria site, summer (November-January) for the Zululand site and spring (August-October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February–April) for the Pretoria site, summer (November–January) for the Zululand site and spring (August–October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A survey was conducted in central inland Queensland, Australia of 108 sites that were deemed to contain Aristida/Bothriochloa native pastures to quantitatively describe the pastures and attempt to delineate possible sub-types. The pastures were described in terms of their floristic composition, plant density and crown cover. There were generally ~20 (range 5–33) main pasture species at a site. A single dominant perennial grass was rare with three to six prominent species the norm. Chrysopogon fallax (golden-beard grass) was the perennial grass most consistently found in all pastures whereas Aristida calycina (dark wiregrass), Enneapogon spp. (bottlewasher grasses), Brunoniella australis (blue trumpet) and Panicum effusum (hairy panic) were all regularly present. The pastures did not readily separate into broad floristic sub-groups, but three groups that landholders could recognise from a combination of the dominant tree and soil type were identified. The three groups were Eucalyptus crebra (narrow-leaved ironbark), E. melanophloia (silver-leaved ironbark) and E. populnea (poplar box). The pastures of the three main sub-groups were then characterised by the prominent presence, singly or in combination, of Bothriochloa ewartiana (desert bluegrass), Eremochloa bimaculata (poverty grass), Bothriochloa decipiens (pitted bluegrass) or Heteropogon contortus (black speargrass). The poplar box group had the greatest diversity of prominent grasses whereas the narrow-leaved ironbark group had the least. Non-native Cenchrus ciliaris (buffel grass) and Melinis repens (red Natal grass) were generally present at low densities. Describing pastures in terms of frequency of a few species or species groups sometimes failed to capture the true nature of the pasture but plant abundance for most species, as density, herbage mass of dry matter or plant crown cover, was correlated with its recorded frequency. A quantitative description of an average pasture in fair condition is provided but it was not possible to explain why some species often occur together or fail to co-exist in Aristida/Bothriochloa pastures, for example C. ciliaris and E. bimaculata rarely co-exist whereas Tragus australianus (small burrgrass) and Enneapogon spp. are frequently recorded together. Most crown cover was provided by perennial grasses but many of these are Aristida spp. (wiregrasses) and not regarded as useful forage for livestock. No new or improved categorisation of the great variation evident in the Aristida/Bothriochloa native pasture type can be given despite the much improved detail provided of the floristic composition by this survey.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95 of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Puccinia psidii, the causal agent of myrtle rust, was first recorded from Latin America more than 100 years ago. It occurs on many native species of Myrtaceae in Latin America and also infects non-native plantation-grown Eucalyptus species in the region. The pathogen has gradually spread to new areas including Australia and most recently South Africa. The aim of this study was to consider the susceptibility of selected Eucalyptus genotypes, particularly those of interest to South African forestry, to infection by P. psidii. In addition, risk maps were compiled based on suitable climatic conditions and the occurrence of potential susceptible tree species. This made it possible to identify the season when P. psidii would be most likely to infect and to define the geographic areas where the rust disease would be most likely to establish in South Africa. As expected, variation in susceptibility was observed between eucalypt genotypes tested. Importantly, species commonly planted in South Africa show good potential for yielding disease-tolerant material for future planting. Myrtle rust is predicted to be more common in spring and summer. Coastal areas, as well as areas in South Africa with subtropical climates, are more conducive to outbreaks of the pathogen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.