952 resultados para non-aqueous dispersion


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional Chinese medicine (TCM) is a great treasure of China, the analysis of which is an arduous task. The viewpoint that all chemical constituents of Chinese herbal complex prescription should be analyzed as a black box is elucidated for the first time. Intelligent multi-mode multi-column chromatographic system (IMMCC) with its hybrids is the basic method and HPLC Unified Method is the breakthrough for the black box analysis. Dang-Gui-Bu-Xue-Tang was selected as a typical TCM and a systematic separation method from non-aqueous mobile phase to pure water mobile phase was put forward in order to convert unknown sample to known sample. The a, c values and UV spectra of 66 components of Astragalus, 78 components of Angelica and 71 components of Dang-Gui-Bu-Xue-Tang were obtained. Intelligent optimization and peak identification method and software for complex samples were developed and the optimum multi-step multi-binary gradient curve of mobile phase for Astragalus was ascertained. The maximum error and minimum error of predicted retention time for all components of Astragalus are 8.62% and 0.05% respectively. All components of Astragalus were compared with those of Angelica and it is found that many components of Astragalus are the same as those of Angelica, while the contents of these components are different. Many components of Dang-Gui-Bu-Xue-Tang are also the same as those of Astragalus and Angelica with different contents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of poly(N-isopropylacrylamide) [pNIPAM]-based homo-polymer and co-polymer microgel particles were prepared by surfactant-free emulsion polymerisation. The co-monomers were acrylic acid. 4-vinylpyridine. butyl acrylate, 4-vinylbiphenyl and vinyl laurate. Co-monomers were added at a concentration of 10% (w/w) relative to the base monomer pNIPAM for the preparation of each co-polymer microgel. The co-monomers chosen vary by their organic chain length, polarity and pH sensitivity, as these should influence how the particles behave in aqueous and non-aqueous solvents. The effect of adding different types of co-monomer into the microgel structure was investigated with respect to their dispersibility in different solvents. These microgel particles have shown useful application in the removal of water from biodiesel prepared from rape seed. Karl Fischer experiments showed that microgel particles can be used to reduce the water content in biodiesel to an acceptable level for incorporation into internal combustion engines. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Volatile organic compound (VOC) contamination of subsurface geological material and groundwater was discovered on the Nortel Monkstown industrial site, Belfast, Northern Ireland. The objectives of this study were to (1) investigate the characteristics of the geological material and its influences on contaminated groundwater flow across the site using borehole logs and hydrological evaluations, and (2) identify the contaminants and examine their distribution in the subsurface geological material and groundwater using chemical analysis. This report focuses on the eastern car park (ECP) which was a former storage area associated with trichloroethene (TCE) degreasing operations. This is where the greatest amount of volatile organic compounds (VOCs), particularly TCE, were detected. The study site is on a complex deposit of clayey glacial till with discontinuous coarser grained lenses, mainly silts, sands and gravel, which occur at 0.45–7.82 m below ground level (bgl). The lenses overall form an elongated formation that acts as a small unconfined shallow aquifer. There is a continuous low permeable stiff clayey till layer beneath the lenses that performs as an aquitard to the groundwater. Highest concentrations of VOCs, mainly TCE, in the geological material and groundwater are in these coarser lenses at ~4.5–7 m bgl. Highest TCE measurements at 390,000 µg L-1 for groundwater and at 39,000 µg kg-1 at 5.7 m for geological material were in borehole GA19 in the coarse lens zone. It is assumed that TCE gained entrance to the subsurface near this borehole where the clayey till was thin to absent above coarse lenses which provided little retardation to the vertical migration of this dense non-aqueous phase liquid (DNAPL) into the groundwater. However, TCE is present in low concentrations in the geological material overlying the coarse lens zone. Additionally, VOCs appear to be associated with poorly drained layers and in peat

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radical anions of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) are shown to be reactive in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, ([C(4)mPyrr][NTf2]), by means of voltammetric measurements. In particular, they are shown to react via a DISP type mechanism such that the electrolysis of p-BrC6H4NO2 occurs consuming between one and two electrons per reactant molecule, leading to the formation of the nitrobenzene radical anion and bromide ions. This behaviour is a stark contrast to that in conventional non-aqueous solvents such as acetonitrile, dimethyl sulfoxide or N,N-dimethylformamide, which suggests that the ionic solvent promotes the reactivity of the radical anion, probably via stabilisation of the charged products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using a small planetary ball mill, liquid-assisted grinding (LAG) of metal salts or oxides (ZnO, CdO, CdCO3, Cu(OAc)(2)center dot H2O, Co(OAc)(2)center dot 4H(2)O, Mn(OAc)(2)center dot 4H(2)O, Ni(OAc)(2)center dot 4H(2)O, FeSO4 center dot 7H(2)O) with two equivalents of isonicotinic acid (HINA) and small amounts of water ( up to 5.6 molar equivalents) gave discrete aquo complexes trans-[M(INA)(2)(OH2)(4)] (M = Zn, Cd, Cu, Fe, Co, Ni, Mn) efficiently within 30 min. For M = Zn, Cd and Cu these complexes readily undergo reversible formal dehydration to the extended network structures [M(INA)(2)] (M = Zn, Cu) or [Cd(INA)(2)(OH2)]center dot DMF by further LAG with non-aqueous liquids such as methanol or DMF. Overall, the mechanochemical dehydrations are more effective than heating or immersion in bulk solvents. The work demonstrates a two-step mechanochemical synthesis of coordination networks via discrete aquo complexes which may be preferable to single step reactions or grinding-annealing procedures in some cases. For example, the two step method was the only way to prepare [Cd(INA)(2)(OH2)]center dot DMF mechanochemically and the porous network Cu(INA)(2) could not be obtained from the aquo complex by heating.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An active pharmaceutical ingredient (API) was found to dissociate from the highly crystalline hydrochloride form to the amorphous free base form, with consequent alterations to tablet properties. Here, a wet granulation manufacturing process has been investigated using in situ Fourier transform (FT)-Raman spectroscopic analyses of granules and tablets prepared with different granulating fluids and under different manufacturing conditions. Dosage form stability under a range of storage stresses was also investigated. Despite the spectral similarities between the two drug forms, low levels of API dissociation could be quantified in the tablets; the technique allowed discrimination of around 4% of the API content as the amorphous free base (i.e. less than 1% of the tablet compression weight). API dissociation was shown to be promoted by extended exposure to moisture. Aqueous granulating fluids and manufacturing delays between granulation and drying stages and storage of the tablets in open conditions at 40◦C/75% relative humidity (RH) led to dissociation. In contrast, non-aqueous granulating fluids, with no delay in processing and storage of the tablets in either sealed containers or at lower temperature/humidity prevented detectable dissociation. It is concluded that appropriate manufacturing process and storage conditions for the finished product involved minimising exposure to moisture of the API. Analysis of the drug using FT-Raman spectroscopy allowed rapid optimisation of the process whilst offering quantitative molecular information concerning the dissociation of the drug salt to the amorphous free base form.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly(vinyl ether) gels SLURPS (Superior Liquid Uptake Resin for Polymer-supported synthesis) with low cross-linking levels have been synthesized for the first time in beaded form using a non-aqueous inverse suspension polymerisation approach. The synthetic protocol was optimized with regards to several parameters including reactions conditions, type and concentration of suspension stabilizer and controlled low temperature addition of co-initiator. Particle size measurements confirm the production of beads with average diameters of 700e950 mm. Optimization of the monomer composition of the poly (vinyl ether) gels resulted in a novel beaded polymer support with considerably improved as well as unique swelling characteristics in solvents ranging from hexane to water. The synthetic utility of the new gel was confirmed by carrying out a set of transformations with complete conversion leading to a useful amino and hydroxy terminated solid-phase precursor resin. Reaction progress could be monitored easily by 1H and 13C gel-phase NMR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Recent experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide signaling pathways are intimately intertwined particularly in the vasculature, with mutual attenuation or potentiation of biological responses under control of the soluble guanylyl cyclase (sGC) / phopshodiesterase (PDE) pathway. There is now compelling evidence that part of the NO/sulfide cross talk has a chemical foundation via the formation of S/N-hybrid molecules including thionitrous acid (HSNO) and nitrosopersulfde (SSNO-). The aim of this study was to characterize the bioactive products of the interaction between sulfide and NO metabolites targeting sGC that may potentially regulate vasodilation. Results We found that the chemical interaction of sulfide with NO or nitrosothiols leads to formation of S/N-hybrid metabolites including SSNO- via intermediate formation of HSNO. Contrary to a recent report in the literature but consistent with the transient nature of HSNO, its formation was not detectable by high-resolution mass spectrometry under physiologically relevant conditions. SSNO- is also formed in non-aqueous media by the reaction of nitrite with oxidized sulfur species including colloidal sulfur and polysulfides. SSNO- is stable in the presence of high concentrations of thiols, release NO, and activates sGC in RFL-6 cells in an NO-dependent fashion. Moreover, SSNO- is a potent vasodilator in aortic rings in vitro and lowers blood pressure in rats in vivo. The presence of high concentrations of SOD or thiols does not affect SSNO- mediated sGC activation, while it potentiates and inhibits the effects of the nitroxyl (HNO) donor Angeli's salt, suggesting that HNO release from SSNO- is not involved in sGC activation. Conclusion The reaction between NO and sulfide leads to fomation of S/N-hybrid molecules including SSNO-, releasing NO, activating sGC and inducing vasodilation. SSNO- is considerably more stable than HSNO at pH 7.4 and thus a more likely biological mediator that can account for the chemical cross-talk between NO and sulfide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports the preparation and characterization of poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} and styrene-divinylbenzene-vinylpiridine filled with nanosilver. Theses materials were synthesized by non aqueous polymerization through a chemical reaction using benzoyl peroxide as the initiator. The nanosilver was obtained from chemical reduction using NaBH(4) as reducing agent and sodium citrate as stabilizer. The nanometric dimension of nanosilver was monitored by UV-visible and confirmed through TEM. The morphology was characterized by SEM and the thermal properties were done by TGA and DSC. The antimicrobial action of the polymers impregnated with nanosilver was evaluated using both microorganisms, Staphylococcus aureus and Escherichia coli. The antimicrobial activity of the poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} filled with nanosilver was confirmed by the presence of an inhibition halo of the bacterial growth in seeded culture media, but was not confirmed to the styrene-divinylbenzene-vinylpiridine. The present work suggest that trans - [RuCl(2)(vpy)(4)] complex facilitate the release of silver ion from the media.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural, thermodynamic and transport properties have been calculated in concentrated non-aqueous NaI solutions using molecular dynamics simulations. Although the solvent has been represented by a simplistic Stockmayer fluid (spherical particles with point dipoles), the general trends observed are still a useful indication of the behavior of real non-aqueous electrolyte systems. Results indicate that in low dielectric media, significant ion pairing and clustering occurs. Contact ion pairs become more prominent at higher temperatures, independent of the dielectric strength of the solvent. Thermodynamic analysis shows that this temperature behavior is predominantly entropically driven. Calculation of ionic diffusivities and conductivities in the NaI/ether system confirms the clustered nature of the salt, with the conductivities significantly lower than those predicted from the Nernst-Einstein relation. In systems where the solvent-ion interactions increase relative to ion-ion interactions (lower charge or higher solvent dipole moment), less clustering is observed and the transport properties indicate independent motion of the ions, with higher calculated conductivities. The solvent in this system is the most mobile species, in comparison with the polymer electrolytes where the solvent is practically immobile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, two different polymer membrane systems based on Nafion and Teflon were investigated as proton conductors for polymer membrane fuel cells. Water-free Nafion117 membranes swollen with different non-aqueous solvents were prepared. The solvents included imidazole, imidazole–imidazolium salt solutions, room temperature molten salts and molten salt–acid solutions. Teflon films were treated with a surfactant, or a Nafion solution, to improve their surface properties, and were subsequently swollen with phosphoric acid. Conductivity measurements were carried out on both the Nafion and Teflon membranes. Conductivities in the range of 10−3 S cm−1 at around 100°C were obtained. This is still an order of magnitude lower than the corresponding water swollen Nafion at 80°C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A wide range of fatty acid esters can be synthesized by esterification and transesterification reactions catalyzed by lipases in non-aqueous systems. In the present study, immobilization of a purified alkaline extra-cellular lipase of Bacillus cereus MTCC 8372 by adsorption on diatomaceous earth (celite) for synthesis of ethyl acetate via transesterification route was investigated. B. cereus lipase was deposited on celite (77% protein binding efficiency) by direct binding from aqueous solution. Immobilized lipase was used to synthesis of ethyl acetate from vinyl acetate and ethanol in n -nonane. Various reaction conditions, such as biocatalyst concentration, substrates concentration, choices of solvents ( n -alkanes), incubation time, temperature, molecular sieves (3Å × 1.5 mm), and water activity(a w ), were optimized. The immobilized lipase (25 mg/ml) was used to perform transesterification in n -alkane(s) that resulted in approximately 73.7 mM of ethyl acetate at 55 °C in n -nonane under shaking (160 rpm) after 15 h, when vinyl acetate and ethanol were used in a equimolar ratio (100 mM each). Addition of molecular sieves (3Å × 1.5 mm) as well as effect of water activity of saturated salt solutions (KI, KCl and KNO 3 ) to the transesterification efficiency has inhibitory effect. Batch operational stability tests indicated that immobilized lipase had retained 50% of its original catalytic activity after four consecutive batches of 15 h each.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a new method for obtaining poly(3,4-ethylenedioxythiophene) (PEDOT/PSS)/gold nanocomposites is described. In a first step, PEDOT/PSS gold nanoparticle aqueous dispersions were obtained by simultaneous chemical synthesis of PEDOT and gold nanoparticles in the presence of PSS that acts as a stabilizer. In a second step, these PEDOT/PSS gold nanoparticle dispersions were used to formulate nanocomposites by mixing the initial dispersion with commercially available PEDOT/PSS aqueous dispersion. Nanocomposite thin films, obtained by casting these dispersions, present an intimate contact between the inorganic and organic components

Relevância:

80.00% 80.00%

Publicador:

Resumo:

 A non-aqueous secondary battery has been constructed by using Zn metal as the anode and chemically synthesised PEDOT as the cathode, with a 1-ethyl-3-methylimidazolium dicyanamide ionic liquid as the electrolyte, which avoids dendritic growth processes on the Zn surface upon charge/discharge cycling. The novel Zn/PEDOT rechargeable cell shows high efficiency and cycling ability, performing over 320 cycles with no indication of short circuit. Both the Zn and PEDOT surfaces showed minimal signs of degradation, suggesting that a Zn/PEDOT electrochemical device would be capable of extended cycle life under numerous charge/discharge cycles.