966 resultados para neutral detergent soluble carbohydrates
Resumo:
Environmental. factors that affect the growth and microcystin production of microcystis have received worldwide attention because of the hazards microcystin poses to environmental safety and public health. Nevertheless, the effects of organic anthropogenic pollution on microcystis are rarely discussed. Gibberellin A(3) (GA(3)) is a vegetable hormone widely used in agriculture and horticulture that can contaminate water as an anthropogenic pollutant. Because of its common occurrence, we studied the effects of GA3 on growth and microcystin production of Microcystis aeruginosa (M. aeruginosa) PCC7806 with different concentrations (0.001-25mg/L) in batch culture. The control was obtained without gibberellin under the same culture conditions. Growth, estimated by dry weight and cell number, increased after the GA3 treatment. GA3 increased the amounts of chlorophyll a, phycocyanin and cellular-soluble protein in the cells of M. aeruginosa PCC7806, but decreased the accumulation of water-soluble carbohydrates. In addition, GA3 was observed to affect nitrogen absorption of the test algae, but to have no effect on the absorption of phosphorus. The amount of microcystin measured by enzyme-Linked immunosorbent assay (ELISA) increased in GA3 treatment groups, but the stimulatory effects were different in different culture phases. It is suggested that GA3 increases M. aeruginosa growth by stimulating its absorbance of nitrogen and increasing its ability to use carbohydrates, accordingly increasing cellular pigments and thus finally inducing accumulation of protein and microcystin. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Nostoc sphaeroides Kutzing was cultivated in paddlewheel-driven raceway ponds and the growth kinetics of 1-2 mm and 3-4 mm colonies of N. sphaeroides was studied. The biomass productivities in 2.5 m(2) raceway ponds inoculated with 1-2 mm and 3-4 mm colonies were 5.2 and 0.25 g dry wt m(-2) stop d(-1), respectively. Furthermore, differently sized colonies showed different relative water content, total soluble carbohydrates, chlorophyll a content and density of filaments. This is the first report on mass culture of N. sphaeroides under outdoor conditions.
Resumo:
Experimental and field studies were conducted to evaluate the effects of NH4+ enrichment on growth and distribution of the submersed macrophyte, Vallisneria natans L, in lakes of the Yangtze River in China, based on the balance between free amino acids (FAA) and soluble carbohydrates (SC) in the plant tissue. Increase of NH4+ rather than NO3- concentrations in the water column caused FAA accumulation and SC depletion of the plant. The plant showed a unimodal pattern of biomass distribution along both FAA/SC ratios and external NH4+ concentrations, indicating that a moderate NH4-N concentration (< 0.3 mg L-1) benefited the plant, whereas the high NH4-N concentration (> 0.56 mg L-1) eliminated the plant completely. Therefore, 0.56 mg NH4-N mg L-1 in the water column was taken as the upper limit for V. natans in lakes of the Yangtze River basin. The mesocosm experiment showed that at a high external NH4-N (0.81 mg L-1), V. natans failed to propagate with a loss of half SC content (5 mg g(-1) DW) in the rhizomes, indicating that the consumption of carbohydrates for detoxification of excess NH4+ into non-toxic FAA significantly diminished carbohydrate supply to the rhizomes. This might consequently inhibit the vegetative reproduction of the plant, and also might be an important cause for the decline and disappearance of the plant with eutrophication. The present study for the first time reports substantial ecophysiological evidences for NH4+ stress to submersed macrophytes, and indicates that NH4+ toxicity arising from eutrophication probably plays a key role in the deterioration of submersed macrophytes like V. natans.
Resumo:
The increasing trend of air temperature along with the climate warming has been accepted gradual-ly by scientists and by the general public. Qinghai-Xizang Plateau, a unique geographic unit due to high-altitude climate, is one of the most susceptible regions to climate warming. Its ecosystem is very fragile and sensi-tive to climate change. In order to get a better understanding of the impacts of climate warming on the nutrient contents of herbage grown in Qinghai-Xizang Plateau, a simulative study was implemented at Daban Moutain by using temperature differences resulted from sites selected at different altitudes and nutrient contents and in vitro digestibility were determined for assessing the quality of the grown herbage. There were significant downtrends in crude protein (CP), ether extract (EE) and nitrogen free extract (NFE) contents of herbage along with the increase of temperature. It had a positive correlation between temperature and content of acid detergent fibre (ADF), acid detergent lignin (ADL) in herbage. In vitro digestibility of herbage decreased along with the in-crease of temperature. The results of this study indicated that climate warming significantly influence nutrient contents and in vitro digestibility of herbage grown in Qinghai-Xizang Plateau. It is suggested that the future climate warming especially the gradual rise of the night temperature could cause negative effect on herbage quality grown in Qinghai-Xizang Plateau by decreasing CP, EE, and NFE contents and increasing some indi-gestible ingredients such as crude fibre (CF), neutral detergent fibre (NDF), ADF, and ADL. This, conse-quently, decreases the ruminant assimilation ability.
Resumo:
Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha(-1) during the growing season in the Inner Mongolia steppe.
Resumo:
Kingston-Smith, A. H., Merry, R. J., Leemans, D. K., Thomas, Howard, Theodorou, M. K. (2005). Evidence in support of a role for plant-mediated proteolysis in the rumens of grazing animals. British Journal of Nutrition, 93(1), 73-79. Sponsorship: DEFRA / BBSRC RAE2008
Resumo:
The digestibility and passage of an experimental diet was used to compare the digestive physiology of two Propithecus species: P. verreauxi and P. tattersalli. Though both animals have a similar feeding ecology, the captive status of P. verreauxi is considered more stable than that of P. tattersalli. The test diet included a local tree species, Rhus copallina, at 15% of dry matter intake (DMI) and Mazuri Leafeater Primate Diet at 85% of DMI. The chemical composition of the diet (dry matter basis) was 25% crude protein, 34% neutral detergent fiber (NDF), and 22% acid detergent fiber (ADF) with a gross energy of 4.52 kcal/g. After a 6 week acclimation to the experimental diet, animals were placed in research caging. After a 7 day adjustment period, animals were dosed with chromium mordant and Co-EDTA as markers for digesta passage and all feed refusals and feces were collected at timed intervals for 7 days. Digestibility values, similar for both species, were approximately 65% for dry matter, crude protein, and energy, and 40% and 35% respectively, for NDF and ADF. Transit times (17-18.5 hr) and mean retention times (31-34 hr) were not significantly different between species, and there was no difference between the chromium mordant and Co-EDTA. Serum values for glucose, urea, and non-esterified fatty acids (NEFA) were obtained during four different time periods to monitor nutritional status. While there was no change in serum glucose, serum urea increased over time. The NEFAs increased across all four time periods for P. verreauxi and increased for the first three periods then decreased in the last period for P. tattersalli. Results obtained indicate no difference in digestibility nor digesta passage between species, and that both Propithecus species were similar to other post-gastric folivores.
Resumo:
Cystatin Related Epididymal Spermatogenic protein (CRES) is expressed in both the testis and epididymis and found associated with spermatozoa. It appears as non-glycosylated (14 and 12 kDa) and glycosylated isoforms (19 and 17 kDa). The role of CRES is enigmatic and dependent on localization of its isoforms, which is the objective of this study. The initial approach was to investigate testicular and epididymal origins of these isoforms by immunohistochemistry and immunogold cytochemistry. To further pinpoint CRES localization we then selectively extracted and fractionated epididymal spermatozoa in order to find by immunoblotting which sperm fractions contained CRES isoforms. Immunohistochemical analysis of mouse spermatogenesis showed that CRES was expressed in the tail cytoplasm of elongating spermatids from step 9-16, with a pattern reminiscent of outer dense fibre (ODF) proteins. Ultrastructural immunocytochemistry revealed that the immunogold label was concentrated over growing ODFs and mitochondrial sheath in the testes which persisted in spermatozoa through the epididymis. Sequential extractions of isolated sperm tails with Triton X-100-dithiothreitol (DTT) to remove the mitochondrial sheath, whose extract contained an unrelated 66 kDa immunoreactive band, followed by either sodium dodecyl sulfate (SDS)-DTT or urea-DTT to solubilise accessory fibres of the tail revealed a 14 kDa immunoreactive band associated with the ODF. In addition, Western blots revealed glycosylated and non-glycosylated CRES isoforms in nonyl phenoxylpolyethoxylethanol (NP40) extracts of the caput, but not cauda, sperm. Immunohistochemical analysis of the caput and cauda epithelium showed that CRES is secreted by the Golgi apparatus of the ii initial segment, fills the proximal caput lumen, and disappears by mid caput. Western blots of caput and cauda tissue and luminal fluid revealed 14 and 19 kDa immunoreactive bands in caput tissues and luminal fluid, but not in the cauda. This study concludes that there are two origins of CRES, one arising in the testis and the other in the epididymis. Testicular CRES is ionically and covalently associated with the ODF while epididymal CRES is detergent soluble and is most likely associated temporarily with the surface of caput epididymal sperm.
Resumo:
In human neutrophils, beta2 integrin engagement mediated a decrease in GTP-bound Rac1 and Rac2. Pretreatment of neutrophils with LY294002 or PP1 (inhibiting phosphatidylinositol 3-kinase (PI 3-kinase) and Src kinases, respectively) partly reversed the beta2 integrin-induced down-regulation of Rac activities. In contrast, beta2 integrins induced stimulation of Cdc42 that was independent of Src family members. The PI 3-kinase dependency of beta2 integrin-mediated decrease in GTP-bound Rac could be explained by an enhanced Rac-GAP activity, since this activity was blocked by LY204002, whereas PP1 only had a minor effect. The fact that only Rac1 but not Rac2 (the dominating Rac) redistributed to the detergent-insoluble fraction and that it was independent of GTP loading excludes the possibility that down-regulation of Rac activities was due to depletion of GTP-bound Rac from the detergent-soluble fraction. The beta2 integrin-triggered relocalization of Rac1 to the cytoskeleton was enabled by a PI 3-kinase-induced dissociation of Rac1 from LyGDI. The dissociations of Rac1 and Rac2 from LyGDI also explained the PI 3-kinase-dependent translocations of Rac GTPases to the plasma membrane. However, these accumulations of Rac in the membrane, as well as that of p47phox and p67phox, were also regulated by Src tyrosine kinases. Inasmuch as Rac GTPases are part of the NADPH oxidase and the respiratory burst is elicited in neutrophils adherent by beta2 integrins, our results indicate that activation of the NADPH oxidase does not depend on the levels of Rac-GTP but instead requires a beta2 integrin-induced targeting of the Rac GTPases as well as p47phox and p67phox to the plasma membrane.
Resumo:
Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.
Resumo:
The aim of this study was to examine interrelationships between functional biochemical and microbial indicators of soil quality, and their suitability to differentiate areas under contrasting agricultural management regimes. The study included five 0.8 ha areas on a sandy-loam soil which had received contrasting fertility and cropping regimes over a 5 year period. These were organically managed vegetable, vegetable -cereal and arable rotations, an organically managed grass clover ley, and a conventional cereal rotation. The organic areas had been converted from conventional cereal production 5 years prior to the start of the study. All of the biochemical analyses, including light fraction organic matter (LFOM) C and N, labile organic N (LON), dissolved organic N and water-soluble carbohydrates showed significant differences between the areas, although the nature of the relationships between the areas varied between the different parameters, and were not related to differences in total soil organic matter content. The clearest differences were seen in LFOM C and N and LON, which were higher in the organic arable area relative to the other areas. In the case of the biological parameters, there were differences between the areas for biomass-N, ATP, chitin content, and the ratios of ATP: biomass and basal respiration: biomass. For these parameters, the precise relationships between the areas varied. However, relative to the conventionally managed area, areas under organic management generally had lower biomass-N and higher ATP contents. Arbuscular mycorrhizal fungus colonization potential was extremely low in the conventional area relative to the organic areas. Further, metabolic diversity and microbial community level physiological profiles, determined by analysis of microbial community metabolism using Biolog GN plates and the activities of eight key nutrient cycling enzymes, grouped the organic areas together, but separated them from the conventional area. We conclude that microbial parameters are more effective and consistent indicators of management induced changes to soil quality than biochemical parameters, and that a variety of biochemical and microbial analyses should be used when considering the impact of management on soil quality. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Diet digestibility and rate of passage, eating and rumination behavior, dry matter intake (DMI), and lactation performance were compared in 6 Jersey and 6 Holstein multiparous cows. Cows were fed gestation diets according to body weight (BW) beginning 7 wk before expected calving and ad libitum amounts of a lactation diet postpartum. Diet digestibility and rate of passage were measured in 5-d periods at wk 5 prepartum and wk 6 and 14 of lactation. Eating and ruminating behavior was measured over 5-d periods at wk 5 and 2 prepartum and wk 2, 6, 10, and 14 of lactation. Milk yield and DMI were higher in Holsteins, but milk energy output per kilogram of metabolic BW (BW0.75) and intake capacity (DMI/kg of BW) did not differ between breeds. Holsteins spent longer ruminating per day compared with Jerseys, but daily eating time did not differ between breeds. Jerseys spent more time eating and ruminating per unit of ingested feed. The duration and number of meals consumed did not differ between breeds, but the meals consumed by Jerseys were distributed more evenly throughout each 24-h period, providing a more regular supply of feed to the rumen. Feed passed through the digestive tract more quickly in Jerseys compared with Holsteins, suggesting particle breakdown and rumen outflow were faster in Jerseys, but this may also reflect the relative size of their digestive tract. Neutral detergent fiber digestibility was greater in Jerseys, despite the shorter rumen retention time, but digestibility of dry matter, organic matter, starch, and N did not differ between breeds. Utilization of digested N for tissue retention was higher at wk 5 prepartum and lower at wk 14 of lactation in Jerseys. In contrast to numerous published studies, intake capacity of Jerseys was not higher than that of Holsteins, but in the present study, cows were selected on the basis of equal expected milk energy yield per kilogram of metabolic BW. Digestibility of neutral detergent fiber and rate of digesta passage were higher in Jerseys, probably as a consequence of increased mastication per unit of feed consumed in Jerseys and their smaller size.
Resumo:
The purpose of this study was to improve the prediction of the quantity and type of Volatile Fatty Acids (VFA) produced from fermented substrate in the rumen of lactating cows. A model was formulated that describes the conversion of substrate (soluble carbohydrates, starch, hemi-cellulose, cellulose, and protein) into VFA (acetate, propionate, butyrate, and other VFA). Inputs to the model were observed rates of true rumen digestion of substrates, whereas outputs were observed molar proportions of VFA in rumen fluid. A literature survey generated data of 182 diets (96 roughage and 86 concentrate diets). Coefficient values that define the conversion of a specific substrate into VFA were estimated meta-analytically by regression of the model against observed VFA molar proportions using non-linear regression techniques. Coefficient estimates significantly differed for acetate and propionate production in particular, between different types of substrate and between roughage and concentrate diets. Deviations of fitted from observed VFA molar proportions could be attributed to random error for 100%. In addition to regression against observed data, simulation studies were performed to investigate the potential of the estimation method. Fitted coefficient estimates from simulated data sets appeared accurate, as well as fitted rates of VFA production, although the model accounted for only a small fraction (maximally 45%) of the variation in VFA molar proportions. The simulation results showed that the latter result was merely a consequence of the statistical analysis chosen and should not be interpreted as an indication of inaccuracy of coefficient estimates. Deviations between fitted and observed values corresponded to those obtained in simulations. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Advancing maize crop maturity is associated with changes in ear-to-stover ratio which may have consequences for the digestibility of the ensiled crop. The apparent digestibility and nitrogen retention of three diets (Early, Mid and Late) containing maize silages made from maize of advancing harvest date [dry matter (DM) contents of the maize silages were 273, 314 and 367 g kg(-1) for the silages in the Early, Mid and Late diets respectively], together with a protein supplement offered in sufficient quantities to make the diets isonitrogenous, were measured in six Holstein-Friesian steers in an incomplete Latin square design with four periods. Dry-matter intake of maize silage tended to be least for the Early diet and greatest for the Medium diet (P=0(.)182). Apparent digestibility of DM and organic matter did not differ between diets. Apparent digestibility of energy was lowest in the Late diet (P = 0(.)057) and the metabolizable energy concentrations of the three silages were calculated as 11(.)0, 11(.)1 and 10(.)6 MJ kg(-1) DM for the Early, Medium and Late diets respectively (P = 0(.)068). No differences were detected between diets in starch digestibility but the number of undamaged grains present in the faeces of animals fed the Late diet was significantly higher than with the Early and Mid diets (P = 0(.)006). The apparent digestibility of neutral-detergent fibre of the diets reduced significantly as silage DM content increased (P = 0(.)012) with a similar trend for the apparent digestibility of acid-detergent fibre (P = 0(.)078). Apparent digestibility of nitrogen (N) was similar for the Early and Mid diets, both being greater than the Late diet (P = 0(.)035). Nitrogen retention did not differ between diets. It was concluded that delaying harvest until the DM content is above 300 g kg(-1) can negatively affect the nutritive value of maize silage in the UK.
Resumo:
Substituting grass silage with maize silage in forage mixtures may result in one forage influencing the nutritive value of another in terms of whole tract nutrient digestibility and N utilisation. This experiment investigated effects of four forage combinations being, grass silage (G); 67 g/100 g grass silage + 33 g/100 g maize silage (GGM); 67 g/100 g maize silage + 33 g/100 g grass silage (MMG); maize silage (M). All diets were formulated to be isonitrogenous (22.4 g N/kg dry matter [DM]) using a concentrate mixture. Ration digestibility and N balance was determined using 7 Holstein Friesian steers (mean body weight 411.0 +/- 120.9 kg) in a cross-over design. Inclusion of maize silage in the diet had a positive linear effect on forage and total DM intake (P = 0.001), and on apparent DM and organic matter digestibility (both P = 0.048). Regardless of the silage ratio used, the metabolisable energy concentration of maize silage was calculated to be higher than that of grass silage (P = 0.058), and linearly related to the relative proportions of the two silages in the forage mixture. Inclusion of maize silage in the diet resulted in a linear decline in the apparent digestibility of starch (P = 0.022), neutral detergent fibre (P < 0.001) and acid detergent fibre (P = 0.003). Nitrogen retention, expressed as amount retained per day or in terms of body weight (g/100 kg) increased linearly with maize inclusion (P = 0.047 and 0.046, respectively). Replacing grass silage with maize silage caused linear responses according to the proportions of each forage in the diet, and that there were no associative effects of combining forages. (C) 2004 Elsevier B.V. All rights reserved.