911 resultados para neuro-fuzzy systems
Resumo:
Computational Intelligence (CI) includes four main areas: Evolutionary Computation (genetic algorithms and genetic programming), Swarm Intelligence, Fuzzy Systems and Neural Networks. This article shows how CI techniques overpass the strict limits of Artificial Intelligence field and can help solving real problems from distinct engineering areas: Mechanical, Computer Science and Electrical Engineering.
Resumo:
A satisfação das necessidades energéticas mundiais, cada vez mais exigentes, bem como a necessidade urgente de procurar caminhos que permitam usufruir de energia, da forma menos poluente possível, levam à necessidade de serem explorados caminhos que permitam cumprir estes pressupostos. A escolha da utilização das energias renováveis na produção de energia, torna-se cada vez mais interessante, quer do ponto de vista ambiental quer económico. O fundamento da lógica difusa está associado à recolha de informações vagas, que são no fundo uma linguagem falada por seres humanos, possibilitando a passagem deste tipo de linguagem para formato numérico, permitindo assim uma manipulação computacional. Elementos climáticos como o sol e o vento, podem ser descritos em forma de variáveis linguísticas, como é o caso de vento forte, temperatura baixa, irradiação fraca, etc. Isto faz com que a aplicação de um controlo a partir destes fenómenos, justifique ser realizado com recurso a sistemas de inferência difusa. Para a realização do trabalho proposto, foram consumados estudos relativos às energias renováveis, com particular enfoque na solar e na eólica. Também foi realizado um estudo dos conceitos pertencentes à lógica difusa e a sistemas de inferência difusa com o objetivo de perceber os diversos parâmetros constituintes desta matéria. Foi realizado o estudo e desenvolvimento de um sistema de aquisição de dados, bem como do controlador difuso que é o busílis do trabalho descrito neste relatório. Para tal, o trabalho foi efetuado com o recurso ao software MATLAB, a partir do qual foram desenvolvidas aplicações que possibilitaram a obtenção de dados climáticos, com vista à sua utilização na toolbox Fuzzy Logic a qual foi utilizada para o desenvolvimento de todo o algoritmo de controlo. Com a possibilidade de aquisição de dados concluída e das variáveis que iriam ser necessárias definidas, foi implementado o controlador difuso que foi sendo sintonizado ao longo do trabalho por forma a garantir os melhores resultados possíveis. Com o recurso à ferramenta Guide, também do MATLAB, foi criada a interface do sistema com o utilizador, sendo possível a averiguação da energia a ser produzida, bem como das contribuições de cada uma das fontes de energia renováveis para a obtenção dessa mesma energia. Por último, foi feita uma análise de resultados através da comparação entre os valores reais esperados e os valores obtidos pelo controlador difuso, bem como assinaladas conclusões e possibilidades de desenvolvimentos futuros deste trabalho.
Resumo:
Esta dissertação apresenta o trabalho realizado no âmbito da unidade curricular de Tese/Dissertação (TEDI), do 2º ano, do Mestrado em Engenharia Eletrotécnica e de Computadores no ramo de Automação e Sistemas. O principal objetivo desta dissertação consiste no desenvolvimento de um sistema que permita efetuar a deteção de um determinado número de anomalias num sinal eletrocardiográfico. O coração é um dos órgãos mais importantes do corpo humano. É ele que recebe e bombeia o sangue pelo organismo. Isto é, recebe sangue pobre em oxigénio, encaminha-o para os pulmões onde será enriquecido em oxigénio. O sangue enriquecido em oxigénio é então encaminhado novamente para o coração que será enviado para todas as partes do corpo humano. O eletrocardiograma desempenha um papel fundamental de modo a diagnosticar eventuais anomalias no correto funcionamento do coração. Estas anomalias podem dever-se a diversos fatores como tabaco, colesterol, pressão sanguínea alta ou diabetes entre outros. As anomalias associadas ao ritmo cardíaco são denominadas de arritmias. As arritmias são fundamentalmente originadas pela alteração da frequência ou do ritmo cardíaco. Utilizando a lógica difusa, pretendeu-se desenvolver um sistema que fizesse a identificação de um determinado número de tipos de batimentos entre os quais: o bloqueio do ramo esquerdo (LBBB), bloqueio do ramo direito (RBBB), contração prematura ventricular (VPC) e contração prematura auricular (APC). Todos os desenvolvimentos efetuados, a nível de programação, são neste documento relatados de forma a constituírem um possível guia para a utilização deste tipo de sistemas. Mais ainda, descrevem-se nele toda a pesquisa efetuada e as alternativas de desenvolvimento selecionadas. O Sistema de Deteção de Arritmias (SDA) desenvolvido mostrou-se eficaz desde que o utilizador consiga identificar corretamente os parâmetros que lhe são pedidos. A interface gráfica desenvolvida permitiu também uma maior facilidade durante a análise do sinal eletrocardiográfico.
Resumo:
Dissertação para obtenção do grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2011
Resumo:
Estudi i implementació d'un sistema multiagent intel·ligent i la seva aplicació a sistemes difusos. Utilització de les llibreries JADE i JFuzzyLogic.
Resumo:
Työn tavoitteena oli tutkia älykkäiden ohjausjärjestelmien käyttöä mekatronisen koneen väsymiskeston parantamisessa. Älykkäiden järjestelmien osalta työssä keskityttiin lähinnä neuroverkkojen ja sumean logiikan mahdollisuuksien tutkimiseen. Tämän lisäksi työssä kehitettiin väsymiskestoikää lisäävä älykkäisiin järjestelmiin perustuva ohjausalgoritmi. Ohjausalgoritmi liitettiin osaksi puutavarakuormaimen ohjausta. Ohjaimen kehittely suoritettiin aluksi simulointimallien avulla. Laajemmat ohjaimen testaukset suoritettiin laboratoriossa fyysisen prototyypin avulla. Tuloksena puutavarakuormaimen puomin väsymiskestoikäennuste saatiin moninkertaistettua. Väsymiskestoiän parantumisen lisäksi ohjainalgoritmi myös vaimentaa kuormaimen värähtelyä.
Resumo:
In the present work the behavior of a model acquaintance of market is analyzed with an only one, in that is considered that the parameters that tie the variables that it incorporates the pattern come expressed through uncertain magnitudes. The objective of the study consists on the analysis of the balance from the hypotheses of established uncertainties
Resumo:
Distortion risk measures summarize the risk of a loss distribution by means of a single value. In fuzzy systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted Averaging (WOWA) operators are used to aggregate a large number of fuzzy rules into a single value. We show that these concepts can be derived from the Choquet integral, and then the mathematical relationship between distortion risk measures and the OWA and WOWA operators for discrete and finite random variables is presented. This connection offers a new interpretation of distortion risk measures and, in particular, Value-at-Risk and Tail Value-at-Risk can be understood from an aggregation operator perspective. The theoretical results are illustrated in an example and the degree of orness concept is discussed.
Resumo:
En el ámbito de la Economía de la Empresa tiene mucha importancia el estudio de los gastos de producción E(Q) que se originarán en el proceso y que generalmente vendrán expresados matemáticamente por una dependencia lineal o cuadrática de las unidades Q que se proponen fabricar. Supondremos, además, que esta función está afectada por dos restricciones: una es de productividad, Q1 ≤ Q2 ≤ Q3 , y otra de limitación de gastos máximos permitidos, E(Q) ≤ EM . En el presente artículo partiremos de una función cuadrática nítida, en la cual justificaremos el signo de los coeficientes que hemos empleado. Después, para adentrarnos en el campo fuzzy, la generalizaremos con otra de coeficientes borrosos. Naturalmente, la nueva función borrosa ya no se expresará a través de una única curva, sino que estará constituida por un haz infinito de curvas nítidas, cada una de ellas con un determinado grado de posibilidad. Centramos nuestra atención en las curvas que llamamos central, inferior y superior. El núcleo de nuestro análisis consistirá básicamente en reducir paulatinamente los soportes de los coeficientes hasta hallar un cierto valor k del α-corte, de manera que a partir de él todas las curvas del haz borroso tengan sentido económico y cumplan las dos restricciones impuestas. En último lugar, y a través de un caso numérico, comprobaremos las deducciones teóricas que hemos obtenido en el análisis anterior
Resumo:
Rough turning is an important form of manufacturing cylinder-symmetric parts. Thus far, increasing the level of automation in rough turning has included process monitoring methods or adaptive turning control methods that aim to keep the process conditions constant. However, in order to improve process safety, quality and efficiency, an adaptive turning control should be transformed into an intelligent machining system optimizing cutting values to match process conditions or to actively seek to improve process conditions. In this study, primary and secondary chatter and chip formation are studied to understand how to measure the effect of these phenomena to the process conditions and how to avoid undesired cutting conditions. The concept of cutting state is used to address the combination of these phenomena and the current use of the power capacity of the lathe. The measures to the phenomena are not developed based on physical measures, but instead, the severity of the measures is modelled against expert opinion. Based on the concept of cutting state, an expert system style fuzzy control system capable of optimizing the cutting process was created. Important aspects of the system include the capability to adapt to several cutting phenomena appearing at once, even if the said phenomena would potentially require conflicting control action.
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
Learning Disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 15 % of children enrolled in schools. The prediction of LD is a vital and intricate job. The aim of this paper is to design an effective and powerful tool, using the two intelligent methods viz., Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, for measuring the percentage of LD that affected in school-age children. In this study, we are proposing some soft computing methods in data preprocessing for improving the accuracy of the tool as well as the classifier. The data preprocessing is performed through Principal Component Analysis for attribute reduction and closest fit algorithm is used for imputing missing values. The main idea in developing the LD prediction tool is not only to predict the LD present in children but also to measure its percentage along with its class like low or minor or major. The system is implemented in Mathworks Software MatLab 7.10. The results obtained from this study have illustrated that the designed prediction system or tool is capable of measuring the LD effectively
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.