992 resultados para near-ultraviolet chemiluminescence
Resumo:
Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant mineral of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm-1 between kaolinite and halloysite. It can not be obviously differentiated the kaolinite and halloysite, let alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, give us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in the all range of their spectra, and it also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis.
Resumo:
Background/aims: To investigate the influence of a period of sustained near work upon axial length in groups of emmetropes and myopes. Methods: Forty young adult subjects (20 myopes and 20 emmetropes) were recruited for the study. Myopes were further classified as either early onset (EOM), late onset (LOM), stable (SM) or progressing (PM) subgroups. Axial length was measured with the IOLMaster instrument before, immediately after and then again 10 minutes after a continuous 30 minute near task of 5 D accommodation demand. Measures of distance objective refraction were also collected. Results: Significant changes in axial length were observed immediately following the near task. EOM axial length elongated on average by 0.027 ± 0.021 mm, LOM by 0.014 ± 0.020 mm, EMM by 0.010 ± 0.015 mm, PM by 0.031 ± 0.022 mm, and SM by 0.014 ± 0.018 mm. At the conclusion of the 10 minute regression period, axial length measures were not significantly different from baseline values. Conclusion: Axial elongation was observed following a prolonged near task. Both EOM and PM groups showed increases in axial length that were significantly greater than emmetropes
Resumo:
Recent epidemiologic studies have suggested that ultraviolet radiation (UV) may protect against non-Hodgkin lymphoma (NHL), but few, if any, have assessed multiple indicators of ambient and personal UV exposure. Using the US Radiologic Technologists study, we examined the association between NHL and self-reported time outdoors in summer, as well as average year-round and seasonal ambient exposures based on satellite estimates for different age periods, and sun susceptibility in participants who had responded to two questionnaires (1994–1998, 2003–2005) and who were cancer-free as of the earlier questionnaire. Using unconditional logistic regression, we estimated the odds ratio (OR) and 95% confidence intervals for 64,103 participants with 137 NHL cases. Self-reported time outdoors in summer was unrelated to risk. Lower risk was somewhat related to higher average year-round and winter ambient exposure for the period closest in time, and prior to, diagnosis (ages 20–39). Relative to 1.0 for the lowest quartile of average year-round ambient UV, the estimated OR for successively higher quartiles was 0.68 (0.42–1.10); 0.82 (0.52–1.29); and 0.64 (0.40–1.03), p-trend = 0.06), for this age period. The lower NHL risk associated with higher year-round average and winter ambient UV provides modest additional support for a protective relationship between UV and NHL.
Resumo:
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm-3) was about one-half of that near motorways (1211 cm-3) and about twice as high as that in the urban background (269 cm-3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2=0.3 at p<0.05) and correlated well with each other in real time (R2=0.87 at p<0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2m to 5m of the kerb. Measured concentrations decreased to background at about 15m from the kerb when the wind speed was 1.3 m s-1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.
Resumo:
The concept of non-destructive testing (NDT) of materials and structures is of immense importance in engineering and medicine. Several NDT methods including electromagnetic (EM)-based e.g. X-ray and Infrared; ultrasound; and S-waves have been proposed for medical applications. This paper evaluates the viability of near infrared (NIR) spectroscopy, an EM method for rapid non-destructive evaluation of articular cartilage. Specifically, we tested the hypothesis that there is a correlation between the NIR spectrum and the physical and mechanical characteristics of articular cartilage such as thickness, stress and stiffness. Intact, visually normal cartilage-on-bone plugs from 2-3yr old bovine patellae were exposed to NIR light from a diffuse reflectance fibre-optic probe and tested mechanically to obtain their thickness, stress, and stiffness. Multivariate statistical analysis-based predictive models relating articular cartilage NIR spectra to these characterising parameters were developed. Our results show that there is a varying degree of correlation between the different parameters and the NIR spectra of the samples with R2 varying between 65 and 93%. We therefore conclude that NIR can be used to determine, nondestructively, the physical and functional characteristics of articular cartilage.
Resumo:
Resistance to rice virus diseases is an important requirement in many Southeast Asian rice breeding programs. Inheritance of resistance to rice tungro spherical virus (RTSV) in TW5, a near-isogenic line derived from Indonesian rice cultivar Utri Merah, was compared to that in TKM6, an Indian rice cultivar. Both TKM6 and Utri Merah are cultivars resistant to RTSV infections. Crosses were made between TKM6 and TN1, a susceptible cultivar, and between TW5 and TN1, and F3 lines were evaluated for their resistance to RTSV using two RTSV inoculum sources and a serological assay (ELISA). In TKM6, the resistance to the mixture of RTSV-V + RTBV inoculum source was controlled by a single recessive gene, whereas in TW5, the resistance was controlled by two recessive genes. A single recessive gene, however, controlled the resistance in TW5 when another RTSV variant, RTSV-VI, was used, suggesting that the resistance in TW5 depends on the nature of the RTSV inoculum used. RT-PCR, sequence, and phylogenetic analyses confirmed that RTSV-VI inoculum differs from RTSV-V inoculum and accurate phenotyping of the resistance to RTSV requires the use of a genetic marker.
Resumo:
The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12000-7600 cm-1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm-1. A broad spectral feature observed for ferrous ion in the 12000-9000 cm-1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm-1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm-1 region resulting from the combinations of vibrational modes of (PO4)3- units.
Resumo:
Raman spectroscopy has enabled insights into the molecular structure of the richelsdorfite Ca2Cu5Sb[Cl|(OH)6|(AsO4)4]·6H2O. This mineral is based upon the incorporation of arsenate or phosphate with chloride anion into the structure and as a consequence the spectra reflect the bands attributable to these anions, namely arsenate or phosphate and chloride. The richelsdorfite Raman spectrum reflects the spectrum of the arsenate anion and consists of ν1 at 849, ν2 at 344 cm−1, ν3 at 835 and ν4 at 546 and 498 cm−1. A band at 268 cm−1 is attributed to CuO stretching vibration. Low wavenumber bands at 185 and 144 cm−1 may be assigned to CuCl TO/LO optic vibrations.
Resumo:
Todoy's monogers-drowing on the expertise of their IT professiono/s-
Resumo:
Shedding light: Nitroaromatic compounds on gold nanoparticles (3 wt %) supported on ZrO2 can be reduced directly to the corresponding azo compounds when illuminated with visible light or ultraviolet light at 40 °C (see picture). The process occurs with high selectivity and at ambient temperature and pressure, and enables the selection of intermediates that are unstable in thermal reactions.
Resumo:
A limiting step to roll-to-roll production of dye-sensitized solar cells on metals is TiO2 sintering (10-30 min). Near infrared (NIR) heating is a novel process innovation which directly heats titanium substrates giving rapid binder removal and sintering. NIR heating (for 12.5 s) at varying power gave titanium temperatures of 545, 685 and 817 degrees Celsius yielding cells with efficiencies of 2.9, 2.8 and 2.5%. Identical cells prepared in a conventional oven (1800 s) at 500, 600 and 800 degrees Celsius gave 2.9, 2.6 and 0.2% efficiency. NIR sintering is ultrafast and has a wide process window making it ideal for rapid manufacturing on metals.
Resumo:
The importance of NIR spectroscopy has been successfully demonstrated in the present study of smithsonite minerals. The fundamental observations in the NIR spectra, in addition to the anions of OH- and CO32- are Fe and Cu in terms of cation content. These ions exhibit broad absorption bands ranging from 13000 to 7000cm-1 (0.77 to 1.43 µm). One broad diagnostic absorption feature centred at 9000 cm-1 (1.11 µm) is the result of ferrous ion spin allowed transition, (5T2g ® 5Eg). The splitting of this band (>1200 cm-1) is a common feature in all the spectra of the studied samples. The light green coloured sample from Namibia show two Cu(II) bands in NIR at 8050 and 10310 cm-1 (1.24 and 0.97 µm) are assigned to 2B1g ® 2A1g and 2B1g ® 2B2g transitions. The effects of structural cations substitution (Ca2+, Fe2+, Cu2+, Cd2+ and Zn2+) on band shifts in the electronic spectra1 region of 11000-7500 cm-1 (0.91-1.33 µm) and vibrational modes of OH- and CO32- anions in 7300 to 4000 cm-1 (1.37-2.50 µm) region were used to distinguish between the smithsonites.