974 resultados para navier-stokes equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of approximate approximations is based on generating functions representing an approximate partition of the unity, only. In the present paper this method is used for the numerical solution of the Poisson equation and the Stokes system in R^n (n = 2, 3). The corresponding approximate volume potentials will be computed explicitly in these cases, containing a one-dimensional integral, only. Numerical simulations show the efficiency of the method and confirm the expected convergence of essentially second order, depending on the smoothness of the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit betrachten wir die Strömung einer zähen, inkompressiblen, instationären Flüssigkeit in einem dreidimensionalen beschränkten Gebiet, deren Verhalten wird mit den instationären Gleichungen von Navier-Stokes beschrieben. Diese Gleichungen gelten für viele wichtige Strömungsprobleme, beispielsweise für Luftströmungen weit unterhalb der Schallgeschwindigkeit, für Wasserströmungen, sowie für flüssige Metalle. Im zweidimensionalen Fall konnten für die Navier-Stokes-Gleichungen bereits weitreichende Existenz-, Eindeutigkeits- und Regularitätsaussagen bewiesen werden. Im allgemeinen dreidimensionalen Fall, falls also die Daten keinen Kleinheitsannahmen unterliegen, hat man bisher lediglich Existenz und Eindeutigkeit zeitlich lokaler starker Lösungen nachgewiesen. Außerdem existieren zeitlich global so genannte schwache Lösungen, deren Regularität für den Nachweis der Eindeutigkeit im dreidimensionalen Fall allerdings nicht ausreicht. Somit bleibt die Lücke zwischen der zeitlich lokalen, eindeutigen starken Lösung und den zeitlich globalen, nicht eindeutigen schwachen Lösungen der Navier-Stokes-Gleichungen im dreidimensionalen Fall weiterhin offen. Das renommierte Clay Mathematics Institute hat dieses Problem zu einem von sieben Millenniumsproblemen erklärt und für seine Lösung eine Million US-Dollar ausgelobt. In der vorliegenden Arbeit wird ein neues Approximationsverfahren für die Navier-Stokes-Gleichungen entwickelt, das auf einer Kopplung der Eulerschen und Lagrangeschen Beschreibung zäher Strömungen beruht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho são provadas algumas estimativas de erro em espaços para as aproximações de Galerkin para a solução do sistema de equações de Navier-Stokes. Mostra-se que o erro decresce em proporção inversa aos autovalores do operador de Stokes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho desenvolvemos uma metodologia numérica para a solução do escoamento em torno de um vórtice. Como a análise completa deste tipo de fluxo não é uma tarefa fácil, simplificações quanto ao escoamento e ao método numérico são necessárias. Também investigamos o comportamento das soluções das equações governantes (Navier-Stokes) quando o tempo tende ao infinito. Nesse sentido, dividimos este trabalho em duas partes: uma numérica e outra analítica. Com o intuito de resolver numericamente o problema, adotamos o método de diferenças finitas baseado na formulação incompressível das equações governantes. O método numérico para integrar essas equações é baseado no esquema de Runge- Kutta com três estágios. Os resultados numéricos são obtidos para cinco planos bidimensionais de um vórtice com números de Reynolds variando entre 1000 e 10000. Na parte analítica estudamos taxas de decaimento das soluções das equações de Navier-Stokes quando os dados iniciais são conhecidos. Também estimamos as taxas de decaimento para algumas derivadas das soluções na norma L2 e comparamos com as taxas correspondentes da solução da equação do calor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a Finite Element Method treatment is outlined for the equations of Magnetoaerodynamics. In order to provide a good basis for numerical treatment of Magneto-aerodynamics, a full version of the complete equations is presented and FEM contribution matrices are deduced, as well as further terms of stabilization for the compressible flow case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximum principle is an important property of solutions to PDE. Correspondingly, it's of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO scheme, and then propose a new parametrized MPP high order finite difference(FD) WENO framework, which is generalized from the one solving hyperbolic conservation laws. A formal analysis is presented to show that a third order finite difference scheme with this parametrized MPP flux limiters maintains the third order accuracy without extra CFL constraint when the low order monotone flux is chosen appropriately. Numerical tests in both one and two dimensional cases are performed on the simulation of the incompressible Navier-Stokes equations in vorticity stream-function formulation and several other problems to show the effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modelling of diffusive terms in particle methods is a delicate matter and several models were proposed in the literature to take such terms into account. The diffusion velocity method (DVM), originally designed for the diffusion of passive scalars, turns diffusive terms into convective ones by expressing them as a divergence involving a so-called diffusion velocity. In this paper, DVM is extended to the diffusion of vectorial quantities in the three-dimensional Navier–Stokes equations, in their incompressible, velocity–vorticity formulation. The integration of a large eddy simulation (LES) turbulence model is investigated and a DVM general formulation is proposed. Either with or without LES, a novel expression of the diffusion velocity is derived, which makes it easier to approximate and which highlights the analogy with the original formulation for scalar transport. From this statement, DVM is then analysed in one dimension, both analytically and numerically on test cases to point out its good behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study explores reproducing the closest geometry of a high pressure ratio single stage radial-inflow turbine applied in the Sundstrans Power Systems T-100 Multipurpose Small Power Unit. The commercial software ANSYS-Vista RTD along with a built in module, BladeGen, is used to conduct a meanline design and create 3D geometry of one flow passage. Carefully examining the proposed design against the geometrical and experimental data, ANSYS-TurboGrid is applied to generate computational mesh. CFD simulations are performed with ANSYS-CFX in which three-dimensional Reynolds-Averaged Navier-Stokes equations are solved subject to appropriate boundary conditions. Results are compared with numerical and experimental data published in the literature in order to generate the exact geometry of the existing turbine and validate the numerical results against the experimental ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red blood cells (RBCs) are the most common type of cells in human blood and they exhibit different types of motions and deformed shapes in capillary flows. The behaviour of the RBCs should be studied in order to explain the RBC motion and deformation mechanism. This article presents a numerical simulation method for RBC deformation in microvessels. A two dimensional spring network model is used to represent the RBC membrane, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. The forces acting on the RBC membrane are obtained from the principle of virtual work. The whole fluid domain is discretized into a finite number of particles using smoothed particle hydrodynamics concepts and the motions of all the particles are solved using Navier--Stokes equations. Minimum energy concepts are used to simulate the deformed shape of the RBC model. To verify the model, the motion of a single RBC is simulated in a Poiseuille flow and the characteristic parachute shape of the RBC is observed. Further simulations reveal that the RBC shows a tank treading motion when it flows in a linear shear flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail