905 resultados para nano microscope


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO2 thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO2 films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO2 films was estimated by Tauc's method at different annealing temperature. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured MnO2 was synthesized at ambient condition by reduction of potassium permanganate with aniline. Powder X-ray diffraction, thermal analysis (thermogravimetric and differential thermal analysis), Brunauer-Emmett-Teller surface area, and infrared spectroscopy studies were carried out for physical and chemical characterization. The as-prepared MnO2 was amorphous and contained particles of 5-10 nm diameter. Upon annealing at temperatures >400°C, the amorphous MnO2 attained crystalline α-phase with a concomitant change in morphology. A gradual conversion of nanoparticles to nanorods is evident from scanning electron microscopy and transmission electron microscopy (TEM) studies. High-resolution TEM images suggested that nanoparticles and nanorods grow in different crystallographic planes. Capacitance behavior was studied by cyclic voltammetry and galvanostatic charge-discharge cycling in a potential range from -0.2 to 1.0 V vs SCE in 0.1 M sodium sulfate solution. Specific capacitance of about 250 F g-1 was obtained at a current density of 0.5 mA cm-2(0.8 A g-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct observation of events taking place at the contacting interfaces is important to understand many tribological phenomena. Transmission electron microscope (TEM) has the ability to look through materials at very high magnifications. Most of the TEM observations are done long after the deforming loads and stresses have been relaxed and the material state is further disturbed during the specimen preparation. We have developed a specimen holder in which two electron transparent surfaces can be brought in contact and moved relative to each other in JEOL 2000FX microscope. This holder enables visualization of not only the contacting surfaces at nanoscale but also the subsurface deformation resulting from the contact interaction. Sliding experimentS have been carried out mimicking a single asperity sliding contact. A sharp tungsten probe is moved laterally against a tip mounted on a cantilever. Magnitude of the contact instability, when the contact is broken is found to be dependent on the local geometry of the contact.(C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superplastic materials exhibit very large elongations to failure,typically >500%, and this enables commercial forming of complex shaped components at slow strain rates of similar to 10(-4) s(-1). We report extraordinary record superplastic elongations to failure of up to 5300% at both high strain rates and low temperature in electrodeposited nanocrystalline Ni and some Ni alloys. Superplasticity is not related to the presence of sulfur or a low melting phase at grain boundaries. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganese dioxide is known to be an important electroactive material for supercapacitors. Generally, delta-MnO2 is subjected to electrochemical characterization studies in aqueous electrolytes of Na2SO4. It exhibits capacitance behaviour in the potential range between 0 and 1.0 V vs. SCE (saturated calomel electrode). In the present study, it is shown that delta-MnO2 exhibits capacitance behaviour in Sr(NO3)(2) electrolytes also. The suitable potential range in this electrolyte is also found to be 0-1.0 V. Specific capacitancemeasured in Sr(NO3)(2) electrolyte is 192 F g(-1). X-ray photoelectron spectroscopy data confirm that Sr2+ ions get inserted onto delta-MnO2 anoparticles. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrathin films at fluid interfaces are important not only from a fundamental point of view as 2D complex fluids but have also become increasingly relevant in the development of novel functional materials. There has been an explosion in the synthesis work in this area over the last decade, giving rise to many exotic nanostructures at fluid interfaces. However, the factors controlling particle nucleation, growth and self-assembly at interfaces are poorly understood on a quantitative level. We will outline some of the recent attempts in this direction. Some of the selected investigations examining the macroscopic mechanical properties of molecular and particulate films at fluid interfaces will be reviewed. We conclude with a discussion of the electronic properties of these films that have potential technological and biological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here the design and operation of a novel transmission electron microscope (TEM) triboprobe instrument with real-time vision control for advanced in situ electron microscopy is demonstrated. The NanoLAB triboprobe incorporates a new high stiffness coarse slider design for increased stability and positioning performance. This is linked with an advanced software control system which introduces both new and flexible in situ experimental functional testing modes, plus an automated vision control feedback system. This advancement in instrumentation design unlocks new possibilities of performing a range of new dynamical nanoscale materials tests, including novel friction and fatigue experiments inside the electron microscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomechanical properties of indium nanowires like structures fabricated on quartz substrate by trench template technique, measured using nanoindentation. The hardness and elastic modulus of wires were measured and compared with the values of indium thin film. Displacementburst observed while indenting the nanowire. `Wire-only hardness' obtained using Korsunsky model from composite hardness. Nanowires have exhibited almost same modulus as indium thin film but considerable changes were observed in hardness value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel, cost effective,environment-friendly and energetically beneficial alternative method for the synthesis of giant dielectric pseudo-perovskite material CaCu3Ti4O12 (CCTO) is presented. The method involved auto-combustion of an aqueous precursor solution in oxygen atmosphere with the help of external fuels and is capable of producing high amount of CCTO at ultra-low temperature, in the combustion residue itself. The amount of phase generated was observed to be highly dependent on the combustion process i.e. on the nature and amount of external-fuels added for combustion. Two successful fuel combinations capable of producing reasonably higher amount of the desired compound were investigated. On a structural characterization grain size was observed to decrease drastically to nano-dimension compared to submicron-size that was obtained in a traditional sol-gel combustion and subsequent cacination method. Therefore, the method reported can produce nano-crystalline CaCu3Ti4O12 ceramic matrix at an ultra-low temperature and is expected to be applicable for other multifunctional perovskite oxide materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic degradation of nitrobenzene and substituted nitrobenzenes under UV exposure was investigated with combustion synthesized nano-TiO2 and commercial TiO2 catalyst, Degussa P-25. The experimental data indicated that the photodegradation kinetics was first order. The photocatalytic degradation rates were considerably higher when catalyzed with combustion synthesized TiO2 compared to that of Degussa P-25. The degradation rate coefficients followed the order: 1-chloro,14-dinitrobenzene similar or equal to 4-nitrophenot > 2-nitrophenol > 1-chloro.4-nitrobenzene > 3-niti-ophenol > 2,4-dinitrophenol > 1-chloro,2-nitrobenzene > nitrobenzene > 1,3-dinitrobenzene. Plausible mechanisms and reasons for the observation of the above order are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well uniform microspheres of phase pure Covellite were synthesized through a simple hydrothermal approach using poly vinyl pyrrolidone (PVP) as surfactant. The micro-spheres were constituted of numerous self-organized knitted nano-ribbons of similar to 30 nm thickness. The effect of conc. PVP in the hydrothermal precursor solution on the product morphology was investigated. Based on the out-coming product micro-architecture a growth mechanism was proposed which emphasized bubbled nucleation inside the hydrothermal reactor. In a comparative study on linear optical properties, enhancement of luminescent intensity was observed for nano-ribbon clung microspheres rather than that of agglomerates of distorted particles, which may be attributed to better crystallinity as well as reduced surface defects and ionic vacancies for ribbon-like nano-structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Candida albicans (C albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coil > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coil and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 mu g/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 mu g/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence (PL) properties of nano- and micro-crystalline Hg1-xCdxTe (x approximate to 0.8) grown by the solvothermal method have been studied over the temperature range 10-300 K. The emission spectra of the samples excited with 514.5 nm Ar+ laser consist of five prominent bands around 0.56, 0.60, 0.69, 0.78 and 0.92 eV. The entire PL band in this NIR region is attributed to the luminescence from defect centers. The features like temperature independent peak energy and quite sensitive PL intensity, which has a maximum around 50 K is illustrated by the configuration coordinate model. After 50 K, the luminescence shows a thermal quenching behavior that is usually exhibited by amorphous semiconductors, indicating that the defects are related to the compositional disorder. (C) 2010 Elsevier B.V. All rights reserved.