955 resultados para municipal waste
Resumo:
Sustainable management of solid waste is a global concern, as exemplified by the United Nations Millennium Development Goals (MDG) that 191 member states support. The seventh MDG indirectly advocates for municipal solid waste management (MSWM) by aiming to ensure environmental sustainability into countries’ policies and programs and reverse negative environmental impact. Proper MSWM will likely result in relieving poverty, reducing child mortality, improving maternal health, and preventing disease, which are MDG goals one, four, five, and six, respectively (UNMDG, 2005). Solid waste production is increasing worldwide as the global society strives to obtain a decent quality of life. Several means exist in which the amount of solid waste going to a landfill can be reduced, such as incineration with energy production, composting of organic wastes, and material recovery through recycling, which are all considered sustainable methods by which to manage MSW. In the developing world, composting is already a widely-accepted method to reduce waste fated for the landfill, and incineration for energy recovery can be a costly capital investment for most communities. Therefore, this research focuses on recycling as a solution to the municipal solid waste production problem while considering the three dimensions of sustainability environment, society, and economy. First, twenty-three developing country case studies were quantitatively and qualitatively examined for aspects of municipal solid waste management. The municipal solid waste (MSW) generation and recovery rates, as well as the composition were compiled and assessed. The average MSW generation rate was 0.77 kg/person/day, with recovery rates varying from 5 – 40%. The waste streams of nineteen of these case studies consisted of 0 – 70% recyclable material and 17 – 80% organic material. All twenty-three case studies were analyzed qualitatively by identifying any barriers or incentives to recycling, which justified the creation of twelve factors influencing sustainable municipal solid waste management (MSWM) in developing countries. The presence of regulations, enforcement of laws, and use of incentive schemes constitutes the first factor, Government Policy. Cost of MSWM operations, the budget allocated to MSWM by local to national governments, as well as the stability and reliability of funds comprise the Government Finances factor influencing recycling in the third world. Many case studies indicated that understanding features of a waste stream such as the generation and recovery rates and composition is the first measure in determining proper management solutions, which forms the third factor Waste Characterization. The presence and efficiency of waste collection and segregation by scavengers, municipalities, or private contractors was commonly addressed by the case studies, which justified Waste Collection and Segregation as the fourth factor. Having knowledge of MSWM and an understanding of the linkages between human behavior, waste handling, and health/sanitation/environment comprise the Household Education factor. Individuals’ income influencing waste handling behavior (e.g., reuse, recycling, and illegal dumping), presence of waste collection/disposal fees, and willingness to pay by residents were seen as one of the biggest incentives to recycling, which justified them being combined into the Household Economics factor. The MSWM Administration factor was formed following several references to the presence and effectiveness of private and/or public management of waste through collection, recovery, and disposal influencing recycling activity. Although the MSWM Personnel Education factor was only recognized by six of the twenty-two case studies, the lack of trained laborers and skilled professionals in MSWM positions was a barrier to sustainable MSWM in every case but one. The presence and effectiveness of a comprehensive, integrative, long-term MSWM strategy was highly encouraged by every case study that addressed the tenth factor, MSWM Plan. Although seemingly a subset of private MSWM administration, the existence and profitability of market systems relying on recycled-material throughput, involvement of small businesses, middlemen, and large industries/exporters is deserving of the factor Local Recycled-Material Market. Availability and effective use of technology and/or human workforce and the safety considerations of each were recurrent barriers and incentives to recycling to warrant the Technological and Human Resources factor. The Land Availability factor takes into consideration land attributes such as terrain, ownership, and development which can often times dictate MSWM. Understanding the relationships among the twelve factors influencing recycling in developing countries, made apparent the collaborative nature required of sustainable MSWM. Factors requiring the greatest collaborative inputs include waste collection and segregation, MSWM plan, and local recycled-material market. Aligning each factor to the societal, environmental, and economic dimensions of sustainability revealed the motives behind the institutions contributing to each factor. A correlation between stakeholder involvement and sustainability existed, as supported by the fact that the only three factors driven by all three dimensions of sustainability were the same three that required the greatest collaboration with other factors. With increasing urbanization, advocating for improved health for all through the MDG, and changing consumption patterns resulting in increasing and more complex waste streams, the utilization of the collaboration web offered by this research is ever needed in the developing world. Through its use, the institutions associated with each of the twelve factors can achieve a better understanding of the collaboration necessary and beneficial for more sustainable MSWM.
Resumo:
New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly mportant. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha?1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtureswere higher than in soil-digestate mixtures. For bothwastes, therewas no correlation between disolved reactive P lost and the water soluble P.The interaction between soil and waste, the long experimentation time, and the volume of leachate obtained caused the waste?s wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.
Resumo:
The Municipality of Anchorage (MOA) is required to better manage, operate and control municipal solid waste (MSW) after the Anchorage Assembly instituted a Zero Waste Policy. Two household curbside recycling programs (CRPs), pay-as-you-throw (PAYT) and single-stream, were compared and evaluated to determine an optimal municipal solid waste diversion method for households within the MOA. The analyses find: (1) a CRP must be designed from comprehensive analysis, models and data correlation that combine demographic and psychographic variables; and (2) CRPs can be easily adjusted towards community-specific goals using technology, such as Geographic Information System (GIS) and Radio Frequency Identification (RFID). Combining resources of policy-makers, businesses, and other viable actors are necessary components to produce a sustainable, economically viable curbside recycling program.
Resumo:
Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H2S; the average concentration of H2S in biogas from the landfill leaks is around 1700 ppmv. The fresh composting site was also an important contributor of H2S to the total emission volume; its concentration varied between 3.2 and 1.7 ppmv and a decrease with time was observed. The mature composting site showed a reduction of H2S concentration (<0.1 ppmv). Leachate pond showed a low concentration of H2S (in order of ppbv). Regarding NH3, composting sites and landfill leaks are notable source points of emissions (composting sites varied around 30–600 ppmv; biogas from landfill leaks varied from 160 to 640 ppmv). Regarding VOCs, the main compounds were: limonene, p-cymene, pinene, cyclohexane, reaching concentrations around 0.2–4.3 ppmv. H2S/NH3, limonene/p-cymene, limonene/cyclohexane ratios can be useful for analysing and identifying the emission sources.
Resumo:
Mode of access: Internet.
Resumo:
"Contract no. 68-01-4427"--Verso of t.p.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"Prepublication issue for EPA libraries and State Solid Waste Management Agencies."
Resumo:
This report was written on work performed under Federal solid waste management demonstration grant no. S-801535 awarded to Lowell, Mass. in October, 1972, and cancelled at the request of the grantee in July, 1975.
Resumo:
"DOE/EV-0115."
Resumo:
"DOE/EV-0116."
Resumo:
Published by the Water Supply and Water Pollution Control Program of the division under its earlier name: Division of Sanitary Engineering Services.
Resumo:
Mode of access: Internet.
Resumo:
This manual has been designed for use at the elementary school level in classrooms where instruction dealing with municipal solid waste (MSW) and the 4Rs - reduce, reuse, recycle, and re-buy - is felt important. What separates this document from many others is the methodology as well as the scope and the sequence found here. The methodology focuses on issue investigation and the skills associated with it. The investigation skills methodology employs a broad, more generalizable approach to the process of issue investigation. The intent of this methodology is to develop in students the skills involved in issue investigation, evaluation, and resolution: capabilities which can be used throughout their lives as citizens.