963 resultados para multisensory statistical learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project engages people with learning disabilities to participate as co-researchers and explore museum interpretation through multisensory workshops using microcontrollers and sensors to enable alternative interactive visitor experiences in museums and heritage sites. This article describes how the project brings together artists, engineers, and experts in multimedia advocacy, as well as people with learning disabilities in the co-design of interactive multisensory objects that replicate or respond to objects of cultural significance in our national collections. Through a series of staged multi-sensory art and electronics workshops, people with learning disabilities explore how the different senses could be utilised to augment existing artefacts or create entirely new ones. The co-researchers employ multimedia advocacy tools to reflect on and to communicate their experiences and findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study opinion dynamics in a population of interacting adaptive agents voting on a set of issues represented by vectors. We consider agents who can classify issues into one of two categories and can arrive at their opinions using an adaptive algorithm. Adaptation comes from learning and the information for the learning process comes from interacting with other neighboring agents and trying to change the internal state in order to concur with their opinions. The change in the internal state is driven by the information contained in the issue and in the opinion of the other agent. We present results in a simple yet rich context where each agent uses a Boolean perceptron to state their opinion. If the update occurs with information asynchronously exchanged among pairs of agents, then the typical case, if the number of issues is kept small, is the evolution into a society torn by the emergence of factions with extreme opposite beliefs. This occurs even when seeking consensus with agents with opposite opinions. If the number of issues is large, the dynamics becomes trapped, the society does not evolve into factions and a distribution of moderate opinions is observed. The synchronous case is technically simpler and is studied by formulating the problem in terms of differential equations that describe the evolution of order parameters that measure the consensus between pairs of agents. We show that for a large number of issues and unidirectional information flow, global consensus is a fixed point; however, the approach to this consensus is glassy for large societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we propose a model for the statistical distribution of people versus number of steps acquired by them in a learning process, based on competition, learning and natural selection. We consider that learning ability is normally distributed. We found that the number of people versus step acquired by them in a learning process is given through a power law. As competition, learning and selection is also at the core of all economical and social systems, we consider that power-law scaling is a quantitative description of this process in social systems. This gives an alternative thinking in holistic properties of complex systems. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural health monitoring (SHM) is related to the ability of monitoring the state and deciding the level of damage or deterioration within aerospace, civil and mechanical systems. In this sense, this paper deals with the application of a two-step auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model for linear prediction of damage diagnosis in structural systems. This damage detection algorithm is based on the. monitoring of residual error as damage-sensitive indexes, obtained through vibration response measurements. In complex structures there are. many positions under observation and a large amount of data to be handed, making difficult the visualization of the signals. This paper also investigates data compression by using principal component analysis. In order to establish a threshold value, a fuzzy c-means clustering is taken to quantify the damage-sensitive index in an unsupervised learning mode. Tests are made in a benchmark problem, as proposed by IASC-ASCE with different damage patterns. The diagnosis that was obtained showed high correlation with the actual integrity state of the structure. Copyright © 2007 by ABCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given that the total amount of losses in a distribution system is known, with a reliable methodology for the technical loss calculation, the non-technical losses can be obtained by subtraction. A usual method of calculation technical losses in the electric utilities uses two important factors: load factor and the loss factor. The load factor is usually obtained with energy and demand measurements, whereas, to compute the loss factor it is necessary the learning of demand and energy loss, which are not, in general, prone of direct measurements. In this work, a statistical analysis of this relationship using the curves of a sampling of consumers in a specific company is presented. These curves will be summarized in different bands of coefficient k. Then, it will be possible determine where each group of consumer has its major concentration of points. ©2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the analysis and evaluation of the Power Electronics course at So Paulo State University-UNESP-Campus of Ilha Solteira(SP)-Brazil, which includes the usage of interactive Java simulations tools and an educational software to aid the teaching of power electronic converters. This platform serves as an oriented course for the lectures and supplementary support for laboratory experiments in the power electronics courses. The simulation tools provide an interactive and dynamic way to visualize the power electronics converters behavior together with the educational software, which contemplates the theory and a list of subjects for circuit simulations. In order to verify the performance and the effectiveness of the proposed interactive educational platform, it is presented a statistical analysis considering the last three years. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to verify the effects of a metatextual intervention program, in the elaboration of stories written by students with learning difficulties. Four students were included in the sample of both genders, with ages ranging between eight years and four months and ten years and two months of age. The program was implemented at the participant schools, using an approach of multiple baseline within-subjects, with two conditions: baseline and intervention. Data analysis was based on the classification of stories produced by the students. Mann-Whitney testing was also applied, to analyze whether there have been significant changes in these productions. The results indicated that all students have improved performance in relation to the categories of produced stories, from elementary schemas (33%), for a more elaborate scheme (77%), with a better structuring of the elements that constitute a story. Statistical analysis also showed that the intervention has produced significant results for all variables analyzed. The data obtained have shown that the program was effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Is it feasible to learn the basics of wet mount microscopy of vaginal fluid in 10 hours?Materials and Methods: This is a pilot project wherein 6 students with different grades of education were invited for being tested on their ability to read wet mount microscopic slides before and after 10 hours of hands-on training. Microscopy was performed according to a standard protocol (Femicare, Tienen, Belgium). Before and after training, all students had to evaluate a different set of 50 digital slides. Different diagnoses and microscopic patterns had to be scored. kappa indices were calculated compared with the expert reading. Results: All readers improved their mean scores significantly, especially for the most important types of altered flora (p < .0001). The mean increase in reading concordance (kappa from 0.64 to 0.75) of 1 student with a solid previous experience with microscopy did not reach statistical significance, but the remaining 5 students all improved their scores from poor performance (all kappa < 0.20) to moderate (kappa = 0.53, n = 1) to good (kappa > 0.61, n = 4) concordance. Reading quality improved and reached fair to good concordance on all microscopic items studied, except for the detection of parabasal cells and cytolytic flora. Conclusions: Although further improvement is still possible, a short training course of 10 hours enables vast improvement on wet mount microscopy accuracy and results in fair to good concordance of the most important variables of the vaginal flora compared to a reference reader.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The objective of this study was to analyze the efficacy of multisensory versus muscle strengthening to improve postural control in healthy community-dwelling elderly. Participants: We performed a single-blinded study with 46 community-dwelling elderly allocated to strength (GS, n = 23; 70.18 +/- 4.8 years 22 women and 1 man) and multisensory exercises groups (GM, n = 23; 68.8 +/- 5.9 years; 22 women and 1 man) for 12 weeks. Methods: We performed isokinetic evaluations of muscle groups in the ankle and foot including dorsiflexors, plantar flexors, inversion, and eversion. The oscillation of the center of pressure was assessed with a force platform. Results: The GM group presented a reduction in the oscillation (66.8 +/- 273.4 cm(2) to 11.1 +/- 11.6 cm(2); P = 0.02), which was not observed in the GS group. The GM group showed better results for the peak torque and work than the GS group, but without statistical significance. Conclusion: Although the GM group presented better results, it is not possible to state that one exercise regimen proved more efficacious than the other in improving balance control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis of this paper is based on the assumption that the socio-economic system in which we are living is characterised by three great trends: growing attention to the promotion of human capital; extremely rapid technological progress, based above all on the information and communication technologies (ICT); the establishment of new production and organizational set-ups. These transformation processes pose a concrete challenge to the training sector, which is called to satisfy the demand for new skills that need to be developed and disseminated. Hence the growing interest that the various training sub-systems devote to the issues of lifelong learning and distance learning. In such a context, the so-called e-learning acquires a central role. The first chapter proposes a reference theoretical framework for the transformations that are shaping post-industrial society. It analyzes some key issues such as: how work is changing, the evolution of organizational set-ups and the introduction of learning organization, the advent of the knowledge society and of knowledge companies, the innovation of training processes, and the key role of ICT in the new training and learning systems. The second chapter focuses on the topic of e-learning as an effective training model in response to the need for constant learning that is emerging in the knowledge society. This chapter starts with a reflection on the importance of lifelong learning and introduces the key arguments of this thesis, i.e. distance learning (DL) and the didactic methodology called e-learning. It goes on with an analysis of the various theoretic and technical aspects of e-learning. In particular, it delves into the theme of e-learning as an integrated and constant training environment, characterized by customized programmes and collaborative learning, didactic assistance and constant monitoring of the results. Thus, all the aspects of e-learning are taken into exam: the actors and the new professionals, the virtual communities as learning subjects, the organization of contents in learning objects, the conformity to international standards, the integrated platforms and so on. The third chapter, which concludes the theoretic-interpretative part, starts with a short presentation of the state-of-the-art e-learning international market that aims to understand its peculiarities and its current trends. Finally, we focus on some important regulation aspects related to the strong impulse given by the European Commission first, and by the Italian governments secondly, to the development and diffusion of e-learning. The second part of the thesis (chapters 4, 5 and 6) focus on field research, which aims to define the Italian scenario for e-learning. In particular, we have examined some key topics such as: the challenges of training and the instruments to face such challenges; the new didactic methods and technologies for lifelong learning; the level of diffusion of e-learning in Italy; the relation between classroom training and online training; the main factors of success as well as the most critical aspects of the introduction of e-learning in the various learning environments. As far as the methodological aspects are concerned, we have favoured a qualitative and quantitative analysis. A background analysis has been done to collect the statistical data available on this topic, as well as the research previously carried out in this area. The main source of data is constituted by the results of the Observatory on e-learning of Aitech-Assinform, which covers the 2000s and four areas of implementation (firms, public administration, universities, school): the thesis has reviewed the results of the last three available surveys, offering a comparative interpretation of them. We have then carried out an in-depth empirical examination of two case studies, which have been selected by virtue of the excellence they have achieved and can therefore be considered advanced and emblematic experiences (a large firm and a Graduate School).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.