993 resultados para multiple-organ carcinogenesis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microcirculatory dysfunction contributes significantly to tissue hypoxia and multiple organ failure in sepsis. Ischemia of the gut and intestinal hypoxia are especially relevant for the evolution of sepsis because the mucosal barrier function may be impaired, leading to translocation of bacteria and toxins. Because sympathetic blockade enhances intestinal perfusion under physiologic conditions, we hypothesized that thoracic epidural anesthesia (TEA) may attenuate microcirculatory perturbations during sepsis. The present study was designed as a prospective and controlled laboratory experiment to assess the effects of continuous TEA on the mucosal microcirculation in a cecal ligation and perforation model of sepsis in rats. Anesthetized Sprague-Dawley rats underwent laparotomy and cecal ligation and perforation to induce sepsis. Subsequently, either bupivacaine 0.125% (n = 10) or isotonic sodium chloride solution (n = 9) was continuously infused via the thoracic epidural catheter for 24 h. In addition, a sham laparotomy was carried out in eight animals. Intravital videomicroscopy was then performed on six to ten villi of ileum mucosa. The capillary density was measured as areas encircled by perfused capillaries, that is, intercapillary areas. The TEA accomplished recruitment of microcirculatory units in the intestinal mucosa by decreasing total intercapillary areas (1,317 +/- 403 vs. 1,001 +/- 236 microm2) and continuously perfused intercapillary areas (1,937 +/- 512 vs. 1,311 +/- 678 microm2, each P < 0.05). Notably, TEA did not impair systemic hemodynamic variables beyond the changes caused by sepsis itself. Therefore, sympathetic blockade may represent a therapeutic option to treat impaired microcirculation in the gut mucosa resulting from sepsis. Additional studies are warranted to assess the microcirculatory effects of sympathetic blockade on other splanchnic organs in systemic inflammation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zymosan-induced peritonitis is associated with an increased production of reactive nitrogen oxides that may contribute to the often-observed failure of multiple organ systems in this model of acute inflammation. Quantitative biochemical evidence is provided for a marked 13-fold increase in protein-bound 3-nitrotyrosine (NTyr), a biomarker of reactive nitrogen oxides, in liver tissue of zymosan-treated rats. In order to investigate the localization of NTyr in this affected tissue, a monoclonal antibody, designated 39B6, was raised against 3-(4-hydroxy-3-nitrophenylacetamido) propionic acid-bovine serum albumin conjugate and its performance characterized. 39B6 was judged by competition ELISA to be approximately 2 orders of magnitude more sensitive than a commercial anti-NTyr monoclonal antibody. Binding characteristics of 39B6 were similar, but not identical, to that of a commercial affinity-purified polyclonal antibody in ELISA and immunohistochemical analyses. Western blot experiments revealed high specificity of 39B6 against NTyr and increased immunoreactivity of specific proteins from liver tissue homogenates of zymosan-treated rats. Immunohistochemical analysis of liver sections indicated a marked zymosan-induced increase in immunofluorescent staining, which was particularly intense in or adjacent to nonparenchymal cells, but not in the parenchymal cells of this tissue. Quantitative analysis of fractions enriched in these cell populations corroborated the immunofluorescent data, although the relative amounts detected in response to zymosan treatment was greatly reduced compared to whole liver tissue. These results demonstrate the high specificity of the newly developed antibody and its usefulness in Western blot and immunohistochemical analysis for NTyr, confirm the presence of NTyr by complementary methods, and suggest the possible involvement of reactive nitrogen oxides in hepatic vascular dysfunction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cardiogenic shock complicates up to 7% of ST-segment elevation myocardial infarctions and 2.5% of non-ST-segment elevation myocardial infarctions, with an associated mortality of 50% to 70%. Primary cardiac pump failure is followed by secondary vital organ hypoperfusion and subsequent activation of various cascade pathways, resulting in a downward spiral leading to multiple organ failure and, ultimately, death. Immediate restoration of cardiac output by means of percutaneous ventricular assist devices restores hemodynamic -stability and is an important advance in the management of patients with severe left ventricular dysfunction and cardiogenic shock. This article reviews available evidence supporting the use of percutaneous ventricular assist devices in patients suffering from cardiogenic shock.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Severe acute respiratory failure of varying etiology may require the temporary use of artificial gas exchange devices. So far, extracorporeal membrane oxygenation and extracorporeal carbon dioxide removal have been used successfully for this purpose. A totally implantable intravascular oxygenator (IVOX) recently became available. The authors have used IVOX in three patients who presented with severe respiratory failure secondary to pneumonia (n = 2) and post-traumatic adult respiratory distress syndrome (n = 1). At the time of implantation, all patients had hypoxemia (PaO2 less than 60) despite a 100% inspired oxygen concentration and forced mechanical ventilation. The duration of IVOX therapy ranged from 12 to 71 hr. All patients initially showed improvement in arterial oxygenation, allowing for moderate reduction of ventilator therapy after several hours. In one patient the pulmonary status deteriorated further, and she died from multiple organ failure despite IVOX therapy. One patient could be stabilized but died from other causes. The third patient is a long-term survivor 18 months after IVOX therapy. Gas transfer capabilities of IVOX are limited when compared to extracorporeal membrane oxygenation, and this may restrict its clinical applicability in cases of severe adult respiratory distress syndrome. However, IVOX may be used successfully in selected patients with less severe respiratory failure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Elevated lactate and interleukin-6 (IL-6) levels were shown to correlate with mortality and multiple organ dysfunction in severely traumatized patients. The purpose of this study was to test whether an association exists between 24-hour lactate clearance, IL-6 and procalcitonin (PCT) levels, and the development of infectious complications in trauma patients. METHODS: A total of 1757 consecutive trauma patients with an Injury Severity Score (ISS) > 16 admitted over a 10-year period were retrospectively analyzed over a 21-day period. Exclusion criteria included death within 72 h of admission (24.5%), late admission > 12 h after injury (16%), and age < 16 years (0.5%). Data are stated as the median (range). RESULTS: Altogether, 1032 trauma patients (76.2% male) with an average age of 38 years, a median ISS of 29 (16-75), and an Acute Physiology, Age, and Chronic Health Evaluation (APACHE) II score of 14 (0-40) were evaluated. The in-hospital mortality (>3 days) was 10%. Patients with insufficient 24-hour lactate clearance had a high rate of overall mortality and infections. Elevated early serum procalcitonin on days 1 to 5 after trauma was strongly associated with the subsequent development of sepsis (p < 0.01) but not with nonseptic infections. The kinetics of IL-6 were similar to those of PCT but did differentiate between infected and noninfected patients after day 5. CONCLUSIONS: This study demonstrates that elevated early procalcitonin and IL-6 levels and inadequate 24-hour lactate clearance help identify trauma patients who develop septic and nonseptic infectious complications. Definition of specific cutoff values and early monitoring of these parameters may help direct early surgical and antibiotic therapy and reduce infectious mortality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypoxic-ischaemic encephalopathy (HIE) is of major importance in neonatal and paediatric intensive care with regard to mortality and long-term morbidity. Our aim was to analyse our data in full-term neonates and children with special regard to withdrawal of life support and bad outcome. PATIENTS: All patients with HIE admitted to our unit from 1992-96 were analysed. Criteria for HIE were presence of a hypoxic insult followed by coma or altered consciousness with or without convulsions. Severity of HIE was assessed in neonates using Sarnat stages, and in children the duration of coma. In the majority of cases staging was completed with electrophysiological studies. Outcome was described using the Glasgow Outcome Scale. Bad outcome was defined as death, permanent vegetative state or severe disability, good outcome as moderate disability or good recovery. RESULTS: In the neonatal group (n = 38) outcome was significantly associated with Sarnat stages, presence of convulsions, severely abnormal EEG, cardiovascular failure, and multiple organ dysfunction (MOD). A bad outcome was observed in 27 cases with 14 deaths and 13 survivors. Supportive treatment was withdrawn in 14 cases with 9 subsequent deaths. In the older age group (n = 45) outcome was related to persistent coma of 24-48 h, severely abnormal EEG, cardiovascular failure, liver dysfunction and MOD. A bad outcome was found in 36 cases with 33 deaths and 3 survivors. Supportive treatment was withdrawn in 15 instances, all followed by death. CONCLUSIONS: Overall, neonates and older patients did not differ with regard to good or bad outcome. However, in the neonatal group there were significantly more survivors with bad outcome, either overall or after withdrawal of support. Possible explanations for this difference include variability of hypoxic insult, maturational and metabolic differences, and the more compliant neonatal skull, which prevents brainstem herniation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a direct correlation between the development of the multiple organ dysfunction syndrome (MODS) and the elevated mortality associated with sepsis. The mechanisms responsible for MODS development are being studied, however, the main efforts regarding MODS evaluation have focused on oxygen delivery optimization and on the modulation of the characteristic inflammatory cascade of sepsis, all with negative results. Recent studies have shown that there is development of tissue acidosis, even when there are normal oxygen conditions and limited presence of tissue cellular necrosis or apoptosis, which would indicate that cellular energetic dysfunction may be a central element in MODS pathogenesis. Mitochondrias are the main source of cellular energy, central regulators of cell death and the main source for reactive oxygen species. Several mechanisms contribute to mitochondrial dysfunction during sepsis, that is blockage of pyruvate entry into the Krebs cycle, oxidative phosphorylation substrate use in other enzymatic complexes, enzymatic complex inhibition and membrane damage mediated by oxidative stress, and reduction in mitochondrial content. Hypoxia-inducible factor-1alpha (HIF-1alpha) is a nuclear transcription factor with a central role in the regulation of cellular oxygen homeostasis. Its induction under hypoxic conditions is associated to the expression of hundreds of genes that coordinate the optimization of cellular oxygen delivery and the cellular energy metabolism. HIF-1alpha can also be stabilized under normoxic condition during inflammation and this activation seems to be associated with a prominent pro-inflammatory profile, with lymphocytes dysfunction, and to a reduction in cellular oxygen consumption. Further studies should establish a role for HIF-1alpha as a therapeutic target.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Multiple organ failure is a common complication of acute circulatory and respiratory failure. We hypothesized that therapeutic interventions used routinely in intensive care can interfere with the perfusion of the gut and the liver, and thereby increase the risk of mismatch between oxygen supply and demand. DESIGN: Prospective, observational study. SETTING: Interdisciplinary intensive care unit (ICU) of a university hospital. PATIENTS: Thirty-six patients on mechanical ventilation with acute respiratory or circulatory failure or severe infection were included. INTERVENTIONS: Insertion of a hepatic venous catheter. MEASUREMENTS AND MAIN RESULTS: Daily nursing procedures were recorded. A decrease of >or=5% in hepatic venous oxygen saturation (Sho2) was considered relevant. Observation time was 64 (29-104) hours (median [interquartile range]). The ICU stay was 11 (8-15) days, and hospital mortality was 35%. The number of periods with procedures/patient was 170 (98-268), the number of procedure-related decreases in Sho2 was 29 (13-41), and the number of decreases in Sho2 unrelated to procedures was 9 (4-19). Accordingly, procedure-related Sho2 decreases occurred 11 (7-17) times per day. Median Sho2 decrease during the procedures was 7 (5-10)%, and median increase in the gradient between mixed and hepatic venous oxygen saturation was 6 (4-9)%. Procedures that caused most Sho2 decreases were airway suctioning, assessment of level of sedation, and changing patients' position. Sho2 decreases were associated with small but significant increases in heart rate and intravascular pressures. Maximal Sequential Organ Failure Assessment scores in the ICU correlated with the number of Sho2 decreases (r: .56; p < 0.001) and with the number of procedure-related Sho2 decreases (r: .60; p < 0.001). CONCLUSIONS: Patients are exposed to repeated episodes of impaired splanchnic perfusion during routine nursing procedures. More research is needed to examine the correlation, if any, between nursing procedures and hepatic venous desaturation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of mesenchymal stromal cells (MSCs) for treatment of bacterial infections, including systemic processes like sepsis, is an evolving field of investigation. This study was designed to investigate the potential use of MSCs, harvested from compact bone, and their interactions with the innate immune system, during polymicrobial sepsis induced by cecal ligation and puncture (CLP). We also wanted to elucidate the role of endogenous heme oxygenase (HO)-1 in MSCs during a systemic bacterial infection. MSCs harvested from the bones of HO-1 deficient (-/-) and wild-type (+/+) mice improved the survival of HO-1(-/-) and HO-1(+/+) recipient mice when administered after the onset of polymicrobial sepsis induced by CLP, compared with the administration of fibroblast control cells. The MSCs, originating from compact bone in mice, enhanced the ability of neutrophils to phagocytize bacteria in vitro and in vivo and to promote bacterial clearance in the peritoneum and blood after CLP. Moreover, after depleting neutrophils in recipient mice, the beneficial effects of MSCs were entirely lost, demonstrating the importance of neutrophils for this MSC response. MSCs also decreased multiple organ injury in susceptible HO-1(-/-) mice, when administered after the onset of sepsis. Taken together, these data demonstrate that the beneficial effects of treatment with MSCs after the onset of polymicrobial sepsis is not dependent on endogenous HO-1 expression, and that neutrophils are crucial for this therapeutic response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to visualize and localize the sheep antimicrobials, beta-defensins 1, 2, and 3, (SBD-1, SBD-2, SBD-3), sheep neutrophil defensin alpha (SNP-1), and the cathelicidin LL-37 in sheep small intestine after burn injury, our hypothesis being that these compounds would be upregulated in an effort to overcome a compromised endothelial lining. Response to burn injury includes the release of proinflammatory cytokines and systemic immune suppression that, if untreated, can progress to multiple organ failure and death, so protective mechanisms have to be initiated and implemented. METHODS: Tissue sections were probed with antibodies to the antimicrobials and then visualized with fluorescently labeled secondary antibodies and subjected to fluorescence deconvolution microscopy and image reconstruction. RESULTS: In both the sham and burn samples, all the aforementioned antimicrobials were seen in each of the layers of small intestine, the highest concentration being localized to the epithelium. SBD-2, SBD-3, and SNP-1 were upregulated in both enterocytes and Paneth cells, while SNP-1 and LL-37 showed increases in both the inner circular and outer longitudinal muscle layers of the muscularis externa following burn injury. Each of the defensins, except SBD-1, was also seen in between the muscle layers of the externa and while burn caused slight increases of SBD-2, SBD-3, and SNP-1 in this location, LL-37 content was significantly decreased. CONCLUSION: That while each of these human antimicrobials is present in multiple layers of sheep small intestine, SBD-2, SBD-3, SNP-1, and LL-37 are upregulated in the specific layers of the small intestine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background The relevance of mitochondrial dysfunction as to pathogenesis of multiple organ dysfunction and failure in sepsis is controversial. This focused review evaluates the evidence for impaired mitochondrial function in sepsis. Design Review of original studies in experimental sepsis animal models and clinical studies on mitochondrial function in sepsis. In vitro studies solely on cells and tissues were excluded. PubMed was searched for articles published between 1964 and July 2012. Results Data from animal experiments (rodents and pigs) and from clinical studies of septic critically ill patients and human volunteers were included. A clear pattern of sepsis-related changes in mitochondrial function is missing in all species. The wide range of sepsis models, length of experiments, presence or absence of fluid resuscitation and methods to measure mitochondrial function may contribute to the contradictory findings. A consistent finding was the high variability of mitochondrial function also in control conditions and between organs. Conclusion Mitochondrial function in sepsis is highly variable, organ specific and changes over the course of sepsis. Patients who will die from sepsis may be more affected than survivors. Nevertheless, the current data from mostly young and otherwise healthy animals does not support the view that mitochondrial dysfunction is the general denominator for multiple organ failure in severe sepsis and septic shock. Whether this is true if underlying comorbidities are present, especially in older patients, should be addressed in further studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Complex pelvic traumas, i.e., pelvic fractures accompanied by pelvic soft tissue injuries, still have an unacceptably high mortality rate of about 18 %. PATIENTS AND METHODS We retrospectively evaluated an intersection set of data from the TraumaRegister DGU® and the German Pelvic Injury Register from 2004-2009. Patients with complex and noncomplex pelvic traumas were compared regarding their vital parameters, emergency management, stay in the ICU, and outcome. RESULTS From a total of 344 patients with pelvic injuries, 21 % of patients had a complex and 79 % a noncomplex trauma. Complex traumas were significantly less likely to survive (16.7 % vs. 5.9 %). Whereas vital parameters and emergency treatment in the preclinical setting did not differ substantially, patients with complex traumas were more often in shock and showed acute traumatic coagulopathy on hospital arrival, which resulted in more fluid volumes and transfusions when compared to patients with noncomplex traumas. Furthermore, patients with complex traumas had more complications and longer ICU stays. CONCLUSION Prevention of exsanguination and complications like multiple organ dysfunction syndrome still pose a major challenge in the management of complex pelvic traumas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A one-year-old healthy sheep received an implant stenting the mural ('posterior') leaflet of the mitral valve. The experiment was authorized by the Cantonal Ethical Committee. The surgery was performed on the open, beating heart during cardiopulmonary bypass (CPB). Management of anaesthesia was based on isoflurane with mechanical intermittent positive pressure ventilation (IPPV) of the lungs, combined with intercostal nerve blocks and intravenous fentanyl and lidocaine. Marked cardiovascular depression occurred towards the end of CPB time and required high doses of dopamine, dobutamine, lidocaine and ephedrine to allow for weaning off the CPB pump. Moreover, severe pulmonary dysfunction developed when IPPV was re-initiated after CPB. Hypoxaemia persisted throughout the recovery from general anaesthesia. Multiple organ failure developed gradually during the three postoperative days, leading to euthanasia of the animal. As described in this case, marked lung injury associated with some degree of failure of other vital organs may occur in sheep after CPB. Intraoperative cardiorespiratory complications when weaning-off may indicate the development of 'post-pump syndrome'.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sepsis is a significant cause for multiple organ failure and death in the burn patient, yet identification in this population is confounded by chronic hypermetabolism and impaired immune function. The purpose of this study was twofold: 1) determine the ability of the systemic inflammatory response syndrome (SIRS) and American Burn Association (ABA) criteria to predict sepsis in the burn patient; and 2) develop a model representing the best combination of clinical predictors associated with sepsis in the same population. A retrospective, case-controlled, within-patient comparison of burn patients admitted to a single intensive care unit (ICU) was conducted for the period January 2005 to September 2010. Blood culture results were paired with clinical condition: "positive-sick"; "negative-sick", and "screening-not sick". Data were collected for the 72 hours prior to each blood culture. The most significant predictors were evaluated using logistic regression, Generalized Estimating Equations (GEE) and ROC area under the curve (AUC) analyses to assess model predictive ability. Bootstrapping methods were employed to evaluate potential model over-fitting. Fifty-nine subjects were included, representing 177 culture periods. SIRS criteria were not found to be associated with culture type, with an average of 98% of subjects meeting criteria in the 3 days prior. ABA sepsis criteria were significantly different among culture type only on the day prior (p = 0.004). The variables identified for the model included: heart rate>130 beats/min, mean blood pressure<60 mmHg, base deficit<-6 mEq/L, temperature>36°C, use of vasoactive medications, and glucose>150 mg/d1. The model was significant in predicting "positive culture-sick" and sepsis state, with AUC of 0.775 (p < 0.001) and 0.714 (p < .001), respectively; comparatively, the ABA criteria AUC was 0.619 (p = 0.028) and 0.597 (p = .035), respectively. SIRS criteria are not appropriate for identifying sepsis in the burn population. The ABA criteria perform better, but only for the day prior to positive blood culture results. The time period useful to diagnose sepsis using clinical criteria may be limited to 24 hours. A combination of predictors is superior to individual variable trends, yet algorithms or computer support will be necessary for the clinician to find such models useful. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) are life- threatening disorders that can result from many severe conditions and diseases. Since the American European Consensus Conference established the internationally accepted definition of ALI and ARDS, the epidemiology of pediatric ALI/ARDS has been described in some developed countries. In the developing world, however, there are very few data available regarding the burden, etiologies, management, outcome, and factors associated with outcomes of ALI/ARDS in children. ^ Therefore, we conducted this observational, clinical study to estimate the prevalence and case mortality rate of ALI/ARDS among a cohort of patients admitted to the pediatric intensive care unit (PICU) of the National Hospital of Pediatrics in Hanoi, the largest children's hospital in Vietnam. Etiologies and predisposing factors, and management strategies for pediatric ALI/ARDS were described. In addition, we determined the prevalence of HIV infection among children with ALI/ARDS in Vietnam. We also identified the causes of mortality and predictors of mortality and prolonged mechanical ventilation of children with ALI/ARDS. ^ A total of 1,051 patients consecutively admitted to the pediatric intensive care unit from January 2011 to January 2012 were screened daily for development of ALI/ARDS using the American-European Consensus Conference Guidelines. All identified patients with ALI/ARDS were followed until hospital discharge or death in the hospital. Patients' demographic and clinical data were collected. Multivariable logistic regression models were developed to identify independent predictors of mortality and other adverse outcome of ALI/ARDS. ^ Prevalence of ALI and ARDS was 9.6% (95% confidence interval, 7.8% to 11.4%) and 8.8% (95% confidence interval, 7.0% to 10.5%) of total PICU admissions, respectively. Infectious pneumonia and sepsis were the most common causes of ALI/ARDS accounting for 60.4% and 26.7% of cases, respectively. Prevalence of HIV infection among children with ALI/ARDS was 3.0%. The case fatality rate of ALI/ARDS was 63.4% (95% confidence interval, 53.8% to 72.9%). Multiple organ failure and refractory hypoxemia were the main causes of death. Independent predictors of mortality and prolonged mechanical ventilation were male gender, duration of intensive care stay prior to ALI/ARDS diagnosis, level of oxygenation defect measured by PaO2/FiO2 ratio at ALI/ARDS diagnosis, presence of non-pulmonary organ dysfunction at day one and day three after ALI/ARDS diagnosis, and presence of hospital acquired infection. ^ The results of this study demonstrated that ALI/ARDS was a common and severe condition in children in Vietnam. The level of both pulmonary and non-pulmonary organ damage influenced survival of patients with ALI/ARDS. Strategies for preventing ALI/ARDS and for clinical management of the disease are necessary to reduce the associated risks.^