891 resultados para multi-objective models
Resumo:
In a previous study (Jones and Smith, 1999) we established that much the same core pattern of national identity characterizes many developed countries. Using the national identity module from the 1995 International Social Survey Programme, we identified two dimensions of national identity: an ascriptive dimension resembling the concept of ethnic identity described in the historical and theoretical literature, and a voluntarist dimension closer to the notion of civic identity. Some writers view these dimensions in terms of a historical sequence but we find that both constructs coexist in the minds of individual respondents in the nations we examine (we exclude Bulgaria and the Philippines from the present but not the earlier analysis). The dataset used for the multilevel analyses reported here consists of 28 589 respondents in the remaining 21 countries included in the national identity database for the 1995 round of surveys. The macrosociological literature on national identity does not offer well-defined predictions about what precise patterns of national identification we might expect to find among the masses of the developed countries. There are, however, recurring themes from which one can construct plausible hypotheses about how countries might differ according to their level of development, broadly conceived. Thus, we hypothesize that forces such as post-industrialism and globalization tend to favour the more open voluntaristic form of national identity over the more restrictive ascribed form. We develop different multi-level models in order to evaluate specific hypotheses pertaining to such issues, by simultaneously relating individual and societal characteristics to the relative strength of individual commitment to these different types of national identity.
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
PhD thesis in Bioengineering
Resumo:
The problems arising in the logistics of commercial distribution are complexand involve several players and decision levels. One important decision isrelated with the design of the routes to distribute the products, in anefficient and inexpensive way.This article explores three different distribution strategies: the firststrategy corresponds to the classical vehicle routing problem; the second isa master route strategy with daily adaptations and the third is a strategythat takes into account the cross-functional planning through amulti-objective model with two objectives. All strategies are analyzed ina multi-period scenario. A metaheuristic based on the Iteratetd Local Search,is used to solve the models related with each strategy. A computationalexperiment is performed to evaluate the three strategies with respect to thetwo objectives. The cross functional planning strategy leads to solutions thatput in practice the coordination between functional areas and better meetbusiness objectives.
Resumo:
Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.
Resumo:
The industrialization of passion fruit in the form of juice produces considerable amounts of residue that could be used as food. The objective of the present study was to determine the effects of the volume of passion fruit juice added to the syrup and the cooking time on the color and texture of passion fruit albedo preserved in syrup. Multi-linear models were well fit to describe the value for a* (for the albedo) the values for b* (for the albedo and syrup), which exhibited high correlation coefficients of 98%, 84%, and 88%, respectively. The volume of passion fruit juice added and the cooking time of the albedos in the syrup, involved in the processing of passion fruit albedo preserves in syrup, significantly affected color analyses. The texture was not affected by the parameters studied. Therefore, the use of larger volumes of passion fruit juice and longer cooking time is recommended for the production of passion fruit albedo preserves in syrup to achieve the characteristic yellow color of the fruit.
Resumo:
Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.
Resumo:
This thesis describes research in which genetic programming is used to automatically evolve shape grammars that construct three dimensional models of possible external building architectures. A completely automated fitness function is used, which evaluates the three dimensional building models according to different geometric properties such as surface normals, height, building footprint, and more. In order to evaluate the buildings on the different criteria, a multi-objective fitness function is used. The results obtained from the automated system were successful in satisfying the multiple objective criteria as well as creating interesting and unique designs that a human-aided system might not discover. In this study of evolutionary design, the architectures created are not meant to be fully functional and structurally sound blueprints for constructing a building, but are meant to be inspirational ideas for possible architectural designs. The evolved models are applicable for today's architectural industries as well as in the video game and movie industries. Many new avenues for future work have also been discovered and highlighted.
Resumo:
This thesis focuses on developing an evolutionary art system using genetic programming. The main goal is to produce new forms of evolutionary art that filter existing images into new non-photorealistic (NPR) styles, by obtaining images that look like traditional media such as watercolor or pencil, as well as brand new effects. The approach permits GP to generate creative forms of NPR results. The GP language is extended with different techniques and methods inspired from NPR research such as colour mixing expressions, image processing filters and painting algorithm. Colour mixing is a major new contribution, as it enables many familiar and innovative NPR effects to arise. Another major innovation is that many GP functions process the canvas (rendered image), while is dynamically changing. Automatic fitness scoring uses aesthetic evaluation models and statistical analysis, and multi-objective fitness evaluation is used. Results showed a variety of NPR effects, as well as new, creative possibilities.
Resumo:
Passive solar building design is the process of designing a building while considering sunlight exposure for receiving heat in winter and rejecting heat in summer. The main goal of a passive solar building design is to remove or reduce the need of mechanical and electrical systems for cooling and heating, and therefore saving energy costs and reducing environmental impact. This research will use evolutionary computation to design passive solar buildings. Evolutionary design is used in many research projects to build 3D models for structures automatically. In this research, we use a mixture of split grammar and string-rewriting for generating new 3D structures. To evaluate energy costs, the EnergyPlus system is used. This is a comprehensive building energy simulation system, which will be used alongside the genetic programming system. In addition, genetic programming will also consider other design and geometry characteristics of the building as search objectives, for example, window placement, building shape, size, and complexity. In passive solar designs, reducing energy that is needed for cooling and heating are two objectives of interest. Experiments show that smaller buildings with no windows and skylights are the most energy efficient models. Window heat gain is another objective used to encourage models to have windows. In addition, window and volume based objectives are tried. To examine the impact of environment on designs, experiments are run on five different geographic locations. Also, both single floor models and multi-floor models are examined in this research. According to the experiments, solutions from the experiments were consistent with respect to materials, sizes, and appearance, and satisfied problem constraints in all instances.
Resumo:
Many real-world optimization problems contain multiple (often conflicting) goals to be optimized concurrently, commonly referred to as multi-objective problems (MOPs). Over the past few decades, a plethora of multi-objective algorithms have been proposed, often tested on MOPs possessing two or three objectives. Unfortunately, when tasked with solving MOPs with four or more objectives, referred to as many-objective problems (MaOPs), a large majority of optimizers experience significant performance degradation. The downfall of these optimizers is that simultaneously maintaining a well-spread set of solutions along with appropriate selection pressure to converge becomes difficult as the number of objectives increase. This difficulty is further compounded for large-scale MaOPs, i.e., MaOPs possessing large amounts of decision variables. In this thesis, we explore the challenges of many-objective optimization and propose three new promising algorithms designed to efficiently solve MaOPs. Experimental results demonstrate the proposed optimizers to perform very well, often outperforming state-of-the-art many-objective algorithms.
Resumo:
Multi-country models have not been very successful in replicating important features of the international transmission of business cycles. Standard models predict cross-country correlations of output and consumption which are respectively too low and too high. In this paper, we build a multi-country model of the business cycle with multiple sectors in order to analyze the role of sectoral shocks in the international transmission of the business cycle. We find that a model with multiple sectors generates a higher cross-country correlation of output than standard one-sector models, and a lower cross-country correlation of consumption. In addition, it predicts cross-country correlations of employment and investment that are closer to the data than the standard model. We also analyze the relative effects of multiple sectors, trade in intermediate goods, imperfect substitution between domestic and foreign goods, home preference, capital adjustment costs, and capital depreciation on the international transmission of the business cycle.
Resumo:
This paper constructs and estimates a sticky-price, Dynamic Stochastic General Equilibrium model with heterogenous production sectors. Sectors differ in price stickiness, capital-adjustment costs and production technology, and use output from each other as material and investment inputs following an Input-Output Matrix and Capital Flow Table that represent the U.S. economy. By relaxing the standard assumption of symmetry, this model allows different sectoral dynamics in response to monetary policy shocks. The model is estimated by Simulated Method of Moments using sectoral and aggregate U.S. time series. Results indicate 1) substantial heterogeneity in price stickiness across sectors, with quantitatively larger differences between services and goods than previously found in micro studies that focus on final goods alone, 2) a strong sensitivity to monetary policy shocks on the part of construction and durable manufacturing, and 3) similar quantitative predictions at the aggregate level by the multi-sector model and a standard model that assumes symmetry across sectors.
Resumo:
Généralement, les problèmes de conception de réseaux consistent à sélectionner les arcs et les sommets d’un graphe G de sorte que la fonction coût est optimisée et l’ensemble de contraintes impliquant les liens et les sommets dans G sont respectées. Une modification dans le critère d’optimisation et/ou dans l’ensemble de contraintes mène à une nouvelle représentation d’un problème différent. Dans cette thèse, nous nous intéressons au problème de conception d’infrastructure de réseaux maillés sans fil (WMN- Wireless Mesh Network en Anglais) où nous montrons que la conception de tels réseaux se transforme d’un problème d’optimisation standard (la fonction coût est optimisée) à un problème d’optimisation à plusieurs objectifs, pour tenir en compte de nombreux aspects, souvent contradictoires, mais néanmoins incontournables dans la réalité. Cette thèse, composée de trois volets, propose de nouveaux modèles et algorithmes pour la conception de WMNs où rien n’est connu à l’ avance. Le premiervolet est consacré à l’optimisation simultanée de deux objectifs équitablement importants : le coût et la performance du réseau en termes de débit. Trois modèles bi-objectifs qui se différent principalement par l’approche utilisée pour maximiser la performance du réseau sont proposés, résolus et comparés. Le deuxième volet traite le problème de placement de passerelles vu son impact sur la performance et l’extensibilité du réseau. La notion de contraintes de sauts (hop constraints) est introduite dans la conception du réseau pour limiter le délai de transmission. Un nouvel algorithme basé sur une approche de groupage est proposé afin de trouver les positions stratégiques des passerelles qui favorisent l’extensibilité du réseau et augmentent sa performance sans augmenter considérablement le coût total de son installation. Le dernier volet adresse le problème de fiabilité du réseau dans la présence de pannes simples. Prévoir l’installation des composants redondants lors de la phase de conception peut garantir des communications fiables, mais au détriment du coût et de la performance du réseau. Un nouvel algorithme, basé sur l’approche théorique de décomposition en oreilles afin d’installer le minimum nombre de routeurs additionnels pour tolérer les pannes simples, est développé. Afin de résoudre les modèles proposés pour des réseaux de taille réelle, un algorithme évolutionnaire (méta-heuristique), inspiré de la nature, est développé. Finalement, les méthodes et modèles proposés on été évalués par des simulations empiriques et d’événements discrets.
Resumo:
Heilkräuter sind während des Trocknungsprozesses zahlreichen Einflüssen ausgesetzt, welche die Qualität des Endproduktes entscheidend beeinflussen. Diese Forschungsarbeit beschäftigt sich mit der Trocknung von Zitronenmelisse (Melissa officinalis .L) zu einem qualitativ hochwertigen Endprodukt. Es werden Strategien zur Trocknung vorgeschlagen, die experimentelle und mathematische Aspekte mit einbeziehen, um bei einer adäquaten Produktivität die erforderlichen Qualitätsmerkmale im Hinblick auf Farbeänderung und Gehalt an ätherischen Ölen zu erzielen. Getrocknete Zitronenmelisse kann zurzeit, auf Grund verschiedener Probleme beim Trocknungsvorgang, den hohen Qualitätsanforderungen des Marktes nicht immer genügen. Es gibt keine standardisierten Informationen zu den einzelnen und komplexen Trocknungsparametern. In der Praxis beruht die Trocknung auf Erfahrungswerten, bzw. werden Vorgehensweisen bei der Trocknung anderer Pflanzen kopiert, und oftmals ist die Trocknung nicht reproduzierbar, oder beruht auf subjektiven Annäherungen. Als Folge dieser nicht angepassten Wahl der Trocknungsparameter entstehen oftmals Probleme wie eine Übertrocknung, was zu erhöhten Bruchverlusten der Blattmasse führt, oder eine zu geringe Trocknung, was wiederum einen zu hohen Endfeuchtegehalt im Produkt zur Folge hat. Dies wiederum mündet zwangsläufig in einer nicht vertretbaren Farbänderung und einen übermäßigen Verlust an ätherischen Ölen. Auf Grund der unterschiedlichen thermischen und mechanischen Eigenschaften von Blättern und Stängel, ist eine ungleichmäßige Trocknung die Regel. Es wird außerdem eine unnötig lange Trocknungsdauer beobachtet, die zu einem erhöhten Energieverbrauch führt. Das Trocknen in solaren Tunneln Trocknern bringt folgendes Problem mit sich: wegen des ungeregelten Strahlungseinfalles ist es schwierig die Trocknungstemperatur zu regulieren. Ebenso beeinflusst die Strahlung die Farbe des Produktes auf Grund von photochemischen Reaktionen. Zusätzlich erzeugen die hohen Schwankungen der Strahlung, der Temperatur und der Luftfeuchtigkeit instabile Bedingungen für eine gleichmäßige und kontrollierbare Trocknung. In Anbetracht der erwähnten Probleme werden folgende Forschungsschwerpunkte in dieser Arbeit gesetzt: neue Strategien zur Verbesserung der Qualität werden entwickelt, mit dem Ziel die Trocknungszeit und den Energieverbrauch zu verringern. Um eine Methodik vorzuschlagen, die auf optimalen Trocknungsparameter beruht, wurden Temperatur und Luftfeuchtigkeit als Variable in Abhängigkeit der Trocknungszeit, des ätherischer Ölgehaltes, der Farbänderung und der erforderliche Energie betrachtet. Außerdem wurden die genannten Parametern und deren Auswirkungen auf die Qualitätsmerkmale in solaren Tunnel Trocknern analysiert. Um diese Ziele zu erreichen, wurden unterschiedliche Ansätze verfolgt. Die Sorption-Isothermen und die Trocknungskinetik von Zitronenmelisse und deren entsprechende Anpassung an verschiedene mathematische Modelle wurden erarbeitet. Ebenso wurde eine alternative gestaffelte Trocknung in gestufte Schritte vorgenommen, um die Qualität des Endproduktes zu erhöhen und gleichzeitig den Gesamtenergieverbrauch zu senken. Zusätzlich wurde ein statistischer Versuchsplan nach der CCD-Methode (Central Composite Design) und der RSM-Methode (Response Surface Methodology) vorgeschlagen, um die gewünschten Qualitätsmerkmalen und den notwendigen Energieeinsatz in Abhängigkeit von Lufttemperatur und Luftfeuchtigkeit zu erzielen. Anhand der gewonnenen Daten wurden Regressionsmodelle erzeugt, und das Verhalten des Trocknungsverfahrens wurde beschrieben. Schließlich wurde eine statistische DOE-Versuchsplanung (design of experiments) angewandt, um den Einfluss der Parameter auf die zu erzielende Produktqualität in einem solaren Tunnel Trockner zu bewerten. Die Wirkungen der Beschattung, der Lage im Tunnel, des Befüllungsgrades und der Luftgeschwindigkeit auf Trocknungszeit, Farbänderung und dem Gehalt an ätherischem Öl, wurde analysiert. Ebenso wurden entsprechende Regressionsmodelle bei der Anwendung in solaren Tunneltrocknern erarbeitet. Die wesentlichen Ergebnisse werden in Bezug auf optimale Trocknungsparameter in Bezug auf Qualität und Energieverbrauch analysiert.