919 resultados para multi-environments experiments
Resumo:
Experiments were designed to examine some properties of spatial representations in rats. Adult subjects were trained to escape through a hole at a fixed position in a large circular arena (see Schenk 1989). The experiments were conducted in the dark, with a limited number of controlled visual light cues in order to assess the minimal cue requirement for place learning. Three identical light cues (shape, height and distance from the table) were used. Depending on the condition, they were either permanently on, or alternatively on or off, depending on the position of the rat in the field. Two questions were asked: a) how many identical visual cues were necessary for spatial discrimination in the dark, and b) could rats integrate the relative positions of separate cues, under conditions in which the rat was never allowed to perceive all three cues simultaneously. The results suggest that rats are able to achieve a place discrimination task even if the three cues necessary for efficient orientation can never be seen simultaneously. A dissociation between the discrimination of the spatial position of the goal and the capacity to reach it by a direct path suggests that a reduced number of cues might require prolonged locomotion to allow an accurate orientation in the environment.
Resumo:
In this paper we describe a system for underwater navigation with AUVs in partially structured environments, such as dams, ports or marine platforms. An imaging sonar is used to obtain information about the location of planar structures present in such environments. This information is incorporated into a feature-based SLAM algorithm in a two step process: (I) the full 360deg sonar scan is undistorted (to compensate for vehicle motion), thresholded and segmented to determine which measurements correspond to planar environment features and which should be ignored; and (2) SLAM proceeds once the data association is obtained: both the vehicle motion and the measurements whose correct association has been previously determined are incorporated in the SLAM algorithm. This two step delayed SLAM process allows to robustly determine the feature and vehicle locations in the presence of large amounts of spurious or unrelated measurements that might correspond to boats, rocks, etc. Preliminary experiments show the viability of the proposed approach
Resumo:
How does the multi-sensory nature of stimuli influence information processing? Cognitive systems with limited selective attention can elucidate these processes. Six-year-olds, 11-year-olds and 20-year-olds engaged in a visual search task that required them to detect a pre-defined coloured shape under conditions of low or high visual perceptual load. On each trial, a peripheral distractor that could be either compatible or incompatible with the current target colour was presented either visually, auditorily or audiovisually. Unlike unimodal distractors, audiovisual distractors elicited reliable compatibility effects across the two levels of load in adults and in the older children, but high visual load significantly reduced distraction for all children, especially the youngest participants. This study provides the first demonstration that multi-sensory distraction has powerful effects on selective attention: Adults and older children alike allocate attention to potentially relevant information across multiple senses. However, poorer attentional resources can, paradoxically, shield the youngest children from the deleterious effects of multi-sensory distraction. Furthermore, we highlight how developmental research can enrich the understanding of distinct mechanisms controlling adult selective attention in multi-sensory environments.
Resumo:
The delivery kinetics of growth factors has been suggested to play an important role in the regeneration of peripheral nerves following axotomy. In this context, we designed a nerve conduit (NC) with adjustable release kinetics of nerve growth factor (NGF). A multi-ply system was designed where NC consisting of a polyelectrolyte alginate/chitosan complex was coated with layers of poly(lactide-co-glycolide) (PLGA) to control the release of embedded NGF. Prior to assessing the in vitro NGF release from NC, various release test media, with and without stabilizers for NGF, were evaluated to ensure adequate quantification of NGF by ELISA. Citrate (pH 5.0) and acetate (pH 5.5) buffered saline solutions containing 0.05% Tween 20 yielded the most reliable results for ELISA active NGF. The in vitro release experiments revealed that the best results in terms of reproducibility and release control were achieved when the NGF was embedded between two PLGA layers and the ends of the NC tightly sealed by the PLGA coatings. The release kinetics could be efficiently adjusted by accommodating NGF at different radial locations within the NC. A sustained release of bioactive NGF in the low nanogram per day range was obtained for at least 15days. In conclusion, the developed multi-ply NGF loaded NC is considered a suitable candidate for future implantation studies to gain insight into the relationship between local growth factor availability and nerve regeneration.
Resumo:
The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils.
Resumo:
Abstract: Microbial mats very efficiently cycle elements, such as C, 0, N, S and H, which makes them key players of redox processes at the biosphere-lithosphere interface. They are characterized by high metabolic activities and high turnover rates (production and consumption) of biomass, which mainly consists of cell material and of extracellular organic matter (EOM). The EOM forms a matrix, embedding the microbial cells and fulfilling various functions within the microbial mat, including: mat attachment to surfaces; creation of micro-domains within the mat; physical stabilization under hy- drodynamic stress and the protection of the cells in multiple other stress conditions. EOM mainly consists of polysaccharides, amino acids, and a variety of chemical func-tional groups {e.g., -C00H, - SH -OH). These groups strongly bind cations such as Ca2+ and Mg2+ and thus exert a strong control on carbonate mineral formation within the microbial mat. A feedback mechanism between community metabolisms, their prod¬ucts, and the surrounding physicochemical microenvironment thus influences the de¬gree of carbonate saturation favoring either carbonate precipitation or dissolution. We investigated the driving forces and mechanisms of microbialite formation in the Sari ne River, FR, Switzerland, the hypersaline lake, Big Pond, Bahamas and in labo¬ratory experiments. The two fundamentally different natural systems allowed us to compare the geochemical conditions and microbial metabolisms, necessary for car¬bonate formation in microbial mats. Although carbonates are oversaturated in both environments, precipitation does not occur on physicochemical substrates (i.e. out¬side the microbial mats). In the Sarine a high crystal nucleation threshold exceeds the carbonate saturation, despite the high carbonate alkalinity in the water column. Cyanobacterial photosynthesis strongly locally enhances the carbonate alkalinity, whereas the EOM attract and immobilize calcium, which increases the saturation state and finally leads to carbonate precipitation within the EOM (in this case the cyanobacterial sheath) as nucleation template. In Big Pond, the presence of calcium- chelating anions (i.e. sulfate) and EOM, as well as the presence of magnesium, lowers the calcium activity in the water column and mat, and thus inhibits carbonate pre¬cipitation. Coupled with other heterotrophic metabolisms, sulfate reduction uses the EOM as carbon source, degrading it. The resulting EOM consumption creates alkalin¬ity, releases calcium and consumes sulfate in mat-micro domains, which leads to the formation of carbonate layers at the top of the microbial mat. Résumé: Interface biosphère/lithosphère: médiation microbienne de la précipitation de CaC03 dans des environnements en eaux douces et hypersalines Les tapis microbiens engendrent une circulation très efficace des éléments, tels que C, 0, N, S et H, ce qui en fait des acteurs clé pour les processus d'oxydoréduction à l'inter¬face biosphère-lithosphère. Ils sont caractérisés par des taux élevés d'activité méta¬bolique, ainsi que par la production et la consommation de biomasse, principalement constituée de cellules microbiennes et de matière organique extracellulaire (MOE). Dans un tapis microbien, les cellules microbiennes sont enveloppées par une matrice de MOE qui a différentes fonctions dont l'attachement du tapis aux surfaces, la créa¬tion de micro-domaines dans le tapis, la stabilisation physique en situation de stress hydrodynamique, et la protection des cellules dans de multiples autres conditions de stress. La MOE se compose principalement de polysaccharides, d'acides aminés, et d'une variété de groupes fonctionnels chimiques (par exemple, COOH, -SH et -OH). Ces groupes se lient fortement aux cations, tels que Ca2+ et Mg2+, et exercent ainsi un contrôle fort sur la formation de CaC03 dans le tapis microbien. Un mécanisme de rétroaction, entre les métabolismes de la communauté microbienne, leurs produits, et le microenvironnement physico-chimique, influence le degré de saturation de car¬bonate, favorisant soit leur précipitation, soit leur dissolution. Nous avons étudié le moteur et les mécanismes de minéralisation dans des tapis de la Sarine, FR, Suisse et du lac hypersalin, Big Pond, aux Bahamas, ainsi que durant des expériences en laboratoire. Les deux systèmes naturels, fondamentalement dif¬férents, nous ont permis de comparer les conditions géochimiques et les métabolis¬mes nécessaires à la formation des carbonates dans des tapis microbiens. Bien que les carbonates soient sursaturés dans les deux environnements, la précipitation ne se produit pas sur des substrats physico-chimiques (en dehors du tapis microbien). Dans la Sarine, malgré un taux d'alcalinité élevé, les valeurs de seuil pour la nucléa- tion de carbonates sont plus hautes que la saturation du carbonate. La photosynthèse cyanobactérienne augmente localement l'alcalinité, alors que la MOE attire et immo¬bilise le calcium, ce qui augmente l'état de saturation et conduit finalement à la pré¬cipitation des carbonates, en utilisant la MOE comme substrat de nucléation. À Big Pond, la présence de chélateurs de calcium, notamment les anions (p.ex. le sulfate) et la MOE, ainsi que la présence de magnésium, réduit l'activité du calcium et inhibe en conséquence la précipitation des carbonates. Couplée avec d'autres métabolismes hétérotrophes, la réduction des sulfates utilise la MOE comme source de carbone, en la dégradant. Cette consommation de MOE crée l'alcalinité, consomme des sulfates et libère du calcium dans des micro-domaines, conduisant à la formation de couches de carbonates dans le haut du tapis microbien.
Resumo:
The objective of this study was to investigate whether it is possible to pool together diffusion spectrum imaging data from four different scanners, located at three different sites. Two of the scanners had identical configuration whereas two did not. To measure the variability, we extracted three scalar maps (ADC, FA and GFA) from the DSI and utilized a region and a tract-based analysis. Additionally, a phantom study was performed to rule out some potential factors arising from the scanner performance in case some systematic bias occurred in the subject study. This work was split into three experiments: intra-scanner reproducibility, reproducibility with twin-scanner settings and reproducibility with other configurations. Overall for the intra-scanner and twin-scanner experiments, the region-based analysis coefficient of variation (CV) was in a range of 1%-4.2% and below 3% for almost every bundle for the tract-based analysis. The uncinate fasciculus showed the worst reproducibility, especially for FA and GFA values (CV 3.7-6%). For the GFA and FA maps, an ICC value of 0.7 and above is observed in almost all the regions/tracts. Looking at the last experiment, it was found that there is a very high similarity of the outcomes from the two scanners with identical setting. However, this was not the case for the two other imagers. Given the fact that the overall variation in our study is low for the imagers with identical settings, our findings support the feasibility of cross-site pooling of DSI data from identical scanners.
Resumo:
Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.
Resumo:
Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.
Resumo:
The Permo-Triassic crisis was a major turning point in geological history. Following the end-Guadalupian extinction phase, the Palaeozoic biota underwent a steady decline through the Lopingian (Late Permian), resulting in their decimation at the level that is adopted as the Permian-Triassic boundary (PTB). This trend coincided with the greatest Phanerozoic regression. The extinction at the end of the Guadalupian and that marking the end of the Permian are therefore related. The subsequent recovery of the biota occupied the whole of the Early Triassic. Several phases of perturbations in [delta]13Ccarb occurred through a similar period, from the late Wuchiapingian to the end of the Early Triassic. Therefore, the Permian-Triassic crisis was protracted, and spanned Late Permian and Early Triassic time. The extinction associated with the PTB occurred in two episodes, the main act with a prelude and the epilogue. The prelude commenced prior to beds 25 and 26 at Meishan and coincided with the end-Permian regression. The main act itself happened in beds 25 and 26 at Meishan. The epilogue occurred in the late Griesbachian and coincided with the second volcanogenic layer (bed 28) at Meishan. The temporal distribution of these episodes constrains the interpretation of mechanisms responsible for the greatest Phanerozoic mass extinction, particularly the significance of a postulated bolide impact that to our view may have occurred about 50,000[no-break space]Myr after the prelude. The prolonged and multi-phase nature of the Permo-Triassic crisis favours the mechanisms of the Earth's intrinsic evolution rather than extraterrestrial catastrophe. The most significant regression in the Phanerozoic, the palaeomagnetic disturbance of the Permo-Triassic Mixed Superchron, widespread extensive volcanism, and other events, may all be related, through deep-seated processes that occurred during the integration of Pangea. These combined processes could be responsible for the profound changes in marine, terrestrial and atmospheric environments that resulted in the end-Permian mass extinction. Bolide impact is possible but is neither an adequate nor a necessary explanation for these changes.
Resumo:
Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.
Resumo:
One of the most important questions regarding experimental economics is the external validity of laboratory experiments. This paper goes through a study that tests the generalizability of a Dictator Game as a laboratory analogue for a naturally occurringdecision-making context of teacher absenteeism. Because lab and naturally-occurring environments systematically differ we then discuss other factors that might strongly affect the choices that individuals make. We conclude that the dichotomy drawn between labexperiments and data collected from natural settings is a false one. A combination of the two would provide deeper and better insights than either separately.
Resumo:
The nanoparticles developed are based on chitosan, a biocompatible and biodegradable polysaccharide. The chitosan nanoparticles are formed in an entirely water-based process by electrostatic interactions with other biocompatible molecules. As a prerequisite to understand the fate of such nanoparticles in cells, comprehensive characterization and stability studies serve to identify quantitatively the impact of the raw material characteristics and preparation conditions on the nanoparticle characteristics. Methods included H-1 NMR spectroscopy, dilution viscometry, particle size analysis and electron microscopy. Cytotoxicity and cell uptake experiments on RAW 264.7 murine macrophages and p23 murine endothelial cells were performed to investigate the correlation with nanoparticle characteristics and effect of surface decoration with alginate. Cytotoxicity was assessed by the MTT survival test; cell uptake was monitored by fluorescent microscopy using labeled polymers.
Resumo:
This paper presents a customizable system used to develop a collaborative multi-user problem solving game. It addresses the increasing demand for appealing informal learning experiences in museum-like settings. The system facilitates remote collaboration by allowing groups of learners tocommunicate through a videoconferencing system and by allowing them to simultaneously interact through a shared multi-touch interactive surface. A user study with 20 user groups indicates that the game facilitates collaboration between local and remote groups of learners. The videoconference and multitouch surface acted as communication channels, attracted students’ interest, facilitated engagement, and promoted inter- and intra-group collaboration—favoring intra-group collaboration. Our findings suggest that augmentingvideoconferencing systems with a shared multitouch space offers newpossibilities and scenarios for remote collaborative environments and collaborative learning.
Resumo:
The use of herbicides in agriculture may lead to environmental problems, such as surface water pollution, with a potential risk for aquatic organisms. The herbicide glyphosate is the most used active ingredient in the world and in Switzerland. In the Lavaux vineyards it is nearly the only molecule applied. This work aimed at studying its fate in soils and its transfer to surface waters, using a multi-scale approach: from molecular (10-9 m) and microscopic scales (10-6 m), to macroscopic (m) and landscape ones (103 m). First of all, an analytical method was developed for the trace level quantification of this widely used herbicide and its main by-product, aminomethylphosphonic acid (AMPA). Due to their polar nature, their derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was done prior to their concentration and purification by solid phase extraction. They were then analyzed by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The method was tested in different aqueous matrices with spiking tests and validated for the matrix effect correction in relevant environmental samples. Calibration curves established between 10 and 1000ng/l showed r2 values above 0.989, mean recoveries varied between 86 and 133% and limits of detection and quantification of the method were as low as 5 and 10ng/l respectively. At the parcel scale, two parcels of the Lavaux vineyard area, located near the Lutrive River at 6km to the east of Lausanne, were monitored to assess to which extent glyphosate and AMPA were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. Results revealed that the mobility of glyphosate and AMPA in the unsaturated zone was likely driven by the precipitation regime and the soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Elevated glyphosate and AMPA concentrations were measured at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flow in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which for the lateral transport of the herbicide molecules was determined by the slope steepness. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. A mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters. Observations made in the Lutrive River revealed interesting details of glyphosate and AMPA dynamics in urbanized landscapes, such as the Lavaux vineyards. Indeed, besides their physical and chemical properties, herbicide dynamics at the catchment level strongly depend on application rates, precipitation regime, land use and also on the presence of drains or constructed channels. Elevated concentrations, up to 4970 ng/l, observed just after the application, confirmed the diffuse export of these compounds from the vineyard area by surface runoff during main rain events. From April to September 2011, a total load of 7.1 kg was calculated, with 85% coming from vineyards and minor urban sources and 15% from arable crops. Small vineyard surfaces could generate high concentrations of herbicides and contribute considerably to the total load calculated at the outlet, due to their steep slopes (~10%). The extrapolated total amount transferred yearly from the Lavaux vineyards to the Lake of Geneva was of 190kg. At the molecular scale, the possible involvement of dissolved organic matter (DOM) in glyphosate and copper transport was studied using UV/Vis fluorescence spectroscopy. Combined with parallel factor (PARAFAC) analysis, this technique allowed characterizing DOM of soil and surface water samples from the studied vineyard area. Glyphosate concentrations were linked to the fulvic-like spectroscopic signature of DOM in soil water samples, as well as to copper, suggesting the formation of ternary complexes. In surface water samples, its concentrations were also correlated to copper ones, but not in a significant way to the fulvic-like signature. Quenching experiments with standards confirmed field tendencies in the laboratory, with a stronger decrease in fluorescence intensity for fulvic-like fluorophore than for more aromatic ones. Lastly, based on maximum concentrations measured in the river, an environmental risk for these compounds was assessed, using laboratory tests and ecotoxicity data from the literature. In our case and with the methodology applied, the risk towards aquatic species was found negligible (RF<1).