985 resultados para multi-cervical unit


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research is an Anglo-Indian comparative case study. It studies managerial action in the participation arena of two British multi-nationals i.e. Cadbury Limited and ICI plc. The research was carried out in matched pairs of factories of the above named companies, located in the Midlands of the UK and in Bombay in India. The data for this research was collected through semi-structured interviews with managers and non-management actors, study of company documents and non-participant observation of some participation forums. The research conceptualises the idea of a `participation arena' consisting of the structures, processes, purposes and dynamics of participation. This arena is visualised as broadly reflecting the organisation structure and can be divided into corporate, unit and shopfloor level. Managerial action in this arena is examined in terms of interaction between three sets of factors i.e. company business objectives, strategies and policies; managerial values of power and control; and the responses of unions. Similarities and differences between management action in the home and host plants of the two multi-national companies are also examined. The major findings of the research are as follows. There is significant difference between the participation arena of the parent and the subsidiary company. The latter is marked by absence of higher level participation forums and lack of opportunity for employees to discuss, let alone influence, key decisions. This results from parent company control over key activities of the subsidiary. The similarities in management action in the participation arenas of the two companies in both countries can be attributed to the operation of the three sets of factors mentioned above. Nevertheless, the particular circumstances of each company are a greater influence on managerial action than the national context. Finally, future areas of research in this field are explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hospital employees who work in an environment with zero tolerance to error, face several stressors that may result in psychological, physiological, and behavioural strains, and subsequently, in suboptimal performance. This thesis includes two studies which investigate the stressor-to-strain-to-performance relationships in hospitals. The first study is a cross-sectional, multi-group investigation based on secondary data from 65,142 respondents in 172 acute/specialist UK NHS trusts. This model proposes that senior management leadership predicts social support and job design which, in turn, moderate stressors-to-strains across team structure. The results confirm the model's robustness. Regression analysis provides support for main effects and minimal support for moderation hypotheses. Therefore, based on its conclusions and inherent limitations, study one lays the framework for study two. The second study is a cross-sectional, multilevel investigation of the strain-reducing effects of social environment on externally-rated unit-level performance based on primary data from 1,137 employees in 136 units, in a hospital in Malta. The term "social environment" refers to the prediction of the moderator variables, which is to say, social support and decision latitude/control, by transformational leadership and team climate across hospital units. This study demonstrates that transformational leadership is positively associated with social support, whereas team climate is positively associated with both moderators. At the same time, it identifies a number of moderating effects which social support and decision latitude/control, both separately and together, had on specific stressor-to-strain relationships. The results show significant mediated stressor-to-strain-to-performance relationships. Furthermore, at the higher level, unit-level performance is positively associated with shared unit-level team climate and with unit-level vision, the latter being one of the five sub-dimension of transformational leadership. At the same time, performance is also positively related to both transformational leadership and team climate when the two constructs are tested together. Few studies have linked the buffering effects of the social environment in occupational stress with performance. Therefore, this research strives to make a significant contribution to the occupational stress and performance literature with a focus on hospital practice. Indeed, the study highlights the wide-ranging and far-reaching implications that these findings provide for theory, management, and practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the drug discovery process, a library of 168 multisubstituted 1,4-benzodiazepines were prepared by a 5-step solid phase combinatorial approach. Substituents were varied in the 3,5, 7 and 8-position on the benzodiazepine scaffold. The combinatorial library was evaluated in a CCK radiolabelled binding assay and CCKA (alimentary) and CCKB (brain) selective lead structures were discovered. The template of CCKA selective 1,4-benzodiazepin-2-ones bearing the tryptophan moiety was chemically modified by selective alkylation and acylation reactions. These studies provided a series of Asperlicin naturally analogues. The fully optimised Asperlicin related compound possessed a similar CCKA activity as the natural occuring compound. 3-Alkylated 1,4-benzodiazepines with selectivity towards the CCKB receptor subtype were optimised on A) the lipophilic side chain and B) the 2-aminophenyl-ketone moiety, together with some stereochemical changes. A C3 unit in the 3-position of 1,4-benzodiazepines possessed a CCKB activity within the nanomolar range. Further SAR optimisation on the N1-position by selective alkylation resulted in an improved CCKB binding with potentially decreased activity on the GABAA/benzodiazepine receptor complex. The in vivo studies revealed two N1-alkylated compounds containing unsaturated alkyl groups with anxiolytic properties. Alternative chemical approaches have been developed, including a route that is suitable for scale up of the desired target molecule in order to provide sufficient quantities for further in vivo evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond laser microfabrication has emerged over the last decade as a 3D flexible technology in photonics. Numerical simulations provide an important insight into spatial and temporal beam and pulse shaping during the course of extremely intricate nonlinear propagation (see e.g. [1,2]). Electromagnetics of such propagation is typically described in the form of the generalized Non-Linear Schrdinger Equation (NLSE) coupled with Drude model for plasma [3]. In this paper we consider a multi-threaded parallel numerical solution for a specific model which describes femtosecond laser pulse propagation in transparent media [4, 5]. However our approach can be extended to similar models. The numerical code is implemented in NVIDIA Graphics Processing Unit (GPU) which provides an effitient hardware platform for multi-threded computing. We compare the performance of the described below parallel code implementated for GPU using CUDA programming interface [3] with a serial CPU version used in our previous papers [4,5]. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate warming is predicted to cause an increase in the growing season by as much as 30% for regions of the arctic tundra. This will have a significant effect on the physiological activity of the vascular plant species and the ecosystem as a whole. The need to understand the possible physiological change within this ecosystem is confounded by the fact that research in this extreme environment has been limited to periods when conditions are most favorable, mid June–mid August. This study attempted to develop the most comprehensive understanding to date of the physiological activity of seven tundra plant species in the Alaskan Arctic under natural and lengthened growing season conditions. Four interrelated lines of research, scaling from cellular signals to ecosystem processes, set the foundation for this study. ^ I established an experiment looking at the physiological response of arctic sedges to soil temperature stress with emphasis on the role of the hormone abscisic acid (ABA). A manipulation was also developed where the growing season was lengthened and soils were warmed in an attempt to determine the maximum physiological capacity of these seven vascular species. Additionally, the physiological capacities of four evergreens were tested in the subnivean environment along with the potential role anthocyanins play in their activity. The measurements were scaled up to determine the physiological role of these evergreens in maintaining ecosystem carbon fluxes. ^ These studies determined that soil temperature differentials significantly affect vascular plant physiology. ABA appears to be a physiological modifier that limits stomatal processes when root temperatures are low. Photosynthetic capacity was limited by internal plant physiological mechanisms in the face of a lengthened growing season. Therefore shifts in ecosystem carbon dynamics are driven by changes in species composition and biomass production on a per/unit area basis. These studies also found that changes in soil temperatures will have a greater effect of physiological processes than would the same magnitude of change in air temperature. The subnivean environment exhibits conditions that are favorable for photosynthetic activity in evergreen species. These measurements when scaled to the ecosystem have a significant role in limiting the system's carbon source capacity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coexistence of gingival recession (GR) with root coverage indication and non-carious cervical lesions (LCNC) generates the need for a protocol that respects and promotes health of dental and periodontal tissues and allows treatment predictability. The main objectives of this theses were: (1) verify, through clinical evaluations, the connective tissue graft for root coverage on direct and indirect restorations made of ceramic resin; (2) analyze the influence of the battery level of the LED curing unit in the composite resin characteristics; (3) assess the influence of restorative materials, composite resin and ceramics, on the viability of gingival fibroblasts from primary culture. Nine patients with good oral hygiene and occlusal stability diagnosed with LCNCs the anterior teeth including premolars associated with gingival recession (class I and II of Miller) and only gingival recession were selected. After initial clinical examination, occlusal adjustment was performed and the patients had their teeth randomized allocated on direct composite resin restoration of LCNC, polishing and GR treatment with connective tissue graft and advanced coronally flap CR group (n = 15); and indirect ceramic restoration of the LCNC's and GR treatment (CTG+CAF) Group C (n = 15). The GR presented teeth with no clinically formed LCNCs cavity were treated using (CTG+CAF) being the control group (n = 15). Sorption and solubility tests, analysis of the degree of conversion and diametral tensile strength were performed in composite resin samples (n = 10) photoactivated by 100, 50 and 10% battery charge LED unit. The viability of fibroblasts on composite resin, ceramics and dentin disks (n = 3) was examined. Clinical follow-up was performed for three months. The data obtained at different stages were tabulated and subjected to analysis for detection of normal distribution and homogeneity. The results showed that: the LED unit with 10% battery affects the characteristics of the composite resin; restorative materials present biocompatibility with gingival fibroblasts; and the association of surgical and restorative treatment of teeth affected by NCCL and GR presents successful results at 3-month follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4 m telescope in La Palma. MEGARA will be a 3rd generation instrument for GTC. It is led by the University Complutense of Madrid with the collaboration of INAOE, IAA, UPM and comprises more than 50 researchers from a large number of institutions worldwide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the core tasks of the virtual-manufacturing environment is to characterise the transformation of the state of material during each of the unit processes. This transformation in shape, material properties, etc. can only be reliably achieved through the use of models in a simulation context. Unfortunately, many manufacturing processes involve the material being treated in both the liquid and solid state, the trans-formation of which may be achieved by heat transfer and/or electro-magnetic fields. The computational modelling of such processes, involving the interactions amongst various interacting phenomena, is a consider-able challenge. However, it must be addressed effectively if Virtual Manufacturing Environments are to become a reality! This contribution focuses upon one attempt to develop such a multi-physics computational toolkit. The approach uses a single discretisation procedure and provides for direct interaction amongst the component phenomena. The need to exploit parallel high performance hardware is addressed so that simulation elapsed times can be brought within the realms of practicality. Examples of Multiphysics modelling in relation to shape casting, and solder joint formation reinforce the motivation for this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the case of a 48-year-old man admitted to the critical care unit with atrial fibrillation, and acute heart and kidney failure accompanied by coagulopathy and an abnormal liver test. Initially diagnosed as a non-ST elevation myocardial infarction, re-evaluation of the case led to the consideration of severe sepsis. Q fever and leptospirosis were the most probable causes and empiric treatment was initiated. A complete recovery was achieved following treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments with ultracold atoms in optical lattice have become a versatile testing ground to study diverse quantum many-body Hamiltonians. A single-band Bose-Hubbard (BH) Hamiltonian was first proposed to describe these systems in 1998 and its associated quantum phase-transition was subsequently observed in 2002. Over the years, there has been a rapid progress in experimental realizations of more complex lattice geometries, leading to more exotic BH Hamiltonians with contributions from excited bands, and modified tunneling and interaction energies. There has also been interesting theoretical insights and experimental studies on “un- conventional” Bose-Einstein condensates in optical lattices and predictions of rich orbital physics in higher bands. In this thesis, I present our results on several multi- band BH models and emergent quantum phenomena. In particular, I study optical lattices with two local minima per unit cell and show that the low energy states of a multi-band BH Hamiltonian with only pairwise interactions is equivalent to an effec- tive single-band Hamiltonian with strong three-body interactions. I also propose a second method to create three-body interactions in ultracold gases of bosonic atoms in a optical lattice. In this case, this is achieved by a careful cancellation of two contributions in the pair-wise interaction between the atoms, one proportional to the zero-energy scattering length and a second proportional to the effective range. I subsequently study the physics of Bose-Einstein condensation in the second band of a double-well 2D lattice and show that the collision aided decay rate of the con- densate to the ground band is smaller than the tunneling rate between neighboring unit cells. Finally, I propose a numerical method using the discrete variable repre- sentation for constructing real-valued Wannier functions localized in a unit cell for optical lattices. The developed numerical method is general and can be applied to a wide array of optical lattice geometries in one, two or three dimensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doutoramento em Economia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the fluctuations in population abundance is a central question in fisheries. Sardine fisheries is of great importance to Portugal and is data-rich and of primary concern to fisheries managers. In Portugal, sub-stocks of Sardina pilchardus (sardine) are found in different regions: the Northwest (IXaCN), Southwest (IXaCS) and the South coast (IXaS-Algarve). Each of these sardine sub-stocks is affected differently by a unique set of climate and ocean conditions, mainly during larval development and recruitment, which will consequently affect sardine fisheries in the short term. Taking this hypothesis into consideration we examined the effects of hydrographic (river discharge), sea surface temperature, wind driven phenomena, upwelling, climatic (North Atlantic Oscillation) and fisheries variables (fishing effort) on S. pilchardus catch rates (landings per unit effort, LPUE, as a proxy for sardine biomass). A 20-year time series (1989-2009) was used, for the different subdivisions of the Portuguese coast (sardine sub-stocks). For the purpose of this analysis a multi-model approach was used, applying different time series models for data fitting (Dynamic Factor Analysis, Generalised Least Squares), forecasting (Autoregressive Integrated Moving Average), as well as Surplus Production stock assessment models. The different models were evaluated, compared and the most important variables explaining changes in LPUE were identified. The type of relationship between catch rates of sardine and environmental variables varied across regional scales due to region-specific recruitment responses. Seasonality plays an important role in sardine variability within the three study regions. In IXaCN autumn (season with minimum spawning activity, larvae and egg concentrations) SST, northerly wind and wind magnitude were negatively related with LPUE. In IXaCS none of the explanatory variables tested was clearly related with LPUE. In IXaS-Algarve (South Portugal) both spring (period when large abundances of larvae are found) northerly wind and wind magnitude were negatively related with LPUE, revealing that environmental effects match with the regional peak in spawning time. Overall, results suggest that management of small, short-lived pelagic species, such as sardine quotas/sustainable yields, should be adapted to a regional scale because of regional environmental variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I moderni processori multi-core ad elevate prestazioni sono alimentati da regolatori di tensione integrati direttamente sul chip. Questi regolatori forniscono a ciascun power domain la tensione ottimale sulla base della sua attività, monitorata da una Power Control Unit. Questo consente da un lato di ottenere una riduzione dei consumi, dall'altro di avere un boost delle prestazioni in particolari contesti. Tali regolatori integrati sul die sono affetti da guasti e fenomeni di aging, che possono compromettere il corretto funzionamento del circuito. Questi problemi non sono tollerabili in contesti caratterizzati da esigenze di elevata reliability, come l'autonomous driving. Dunque, è stato sviluppato un monitor per rivelare on-line eventuali guasti che possono verificarsi durante il normale funzionamento sul campo. In caso di guasto il monitor è in grado di dare un'indicazione d'errore, che può essere utilizzata per attivare delle procedure di recovery. La soluzione proposta, basata su un approccio completamente differente rispetto a quello suggerito dallo standard ISO 26262, beneficia, rispetto a quest'ultima, di costi nettamente inferiori e prestazioni superiori. Il monitor può essere calibrato automaticamente per compensare le variazioni dei parametri di processo ed i fenomeni di aging che possono affliggere il monitor stesso. È stata verificata la self-checking ability del monitor rispetto a guasti di tipo transistor stuck-on, transistor stuck-open e bridging resistivo, risultando Totally Self-Checking rispetto all'insieme di guasti considerato.