953 resultados para model complexity
Resumo:
AbstractIn addition to genetic changes affecting the function of gene products, changes in gene expression have been suggested to underlie many or even most of the phenotypic differences among mammals. However, detailed gene expression comparisons were, until recently, restricted to closely related species, owing to technological limitations. Thus, we took advantage of the latest technologies (RNA-Seq) to generate extensive qualitative and quantitative transcriptome data for a unique collection of somatic and germline tissues from representatives of all major mammalian lineages (placental mammals, marsupials and monotremes) and birds, the evolutionary outgroup.In the first major project of my thesis, we performed global comparative analyses of gene expression levels based on these data. Our analyses provided fundamental insights into the dynamics of transcriptome change during mammalian evolution (e.g., the rate of expression change across species, tissues and chromosomes) and allowed the exploration of the functional relevance and phenotypic implications of transcription changes at a genome-wide scale (e.g., we identified numerous potentially selectively driven expression switches).In a second project of my thesis, which was also based on the unique transcriptome data generated in the context of the first project we focused on the evolution of alternative splicing in mammals. Alternative splicing contributes to transcriptome complexity by generating several transcript isoforms from a single gene, which can, thus, perform various functions. To complete the global comparative analysis of gene expression changes, we explored patterns of alternative splicing evolution. This work uncovered several general and unexpected patterns of alternative splicing evolution (e.g., we found that alternative splicing evolves extremely rapidly) as well as a large number of conserved alternative isoforms that may be crucial for the functioning of mammalian organs.Finally, the third and final project of my PhD consisted in analyzing in detail the unique functional and evolutionary properties of the testis by exploring the extent of its transcriptome complexity. This organ was previously shown to evolve rapidly both at the phenotypic and molecular level, apparently because of the specific pressures that act on this organ and are associated with its reproductive function. Moreover, my analyses of the amniote tissue transcriptome data described above, revealed strikingly widespread transcriptional activity of both functional and nonfunctional genomic elements in the testis compared to the other organs. To elucidate the cellular source and mechanisms underlying this promiscuous transcription in the testis, we generated deep coverage RNA-Seq data for all major testis cell types as well as epigenetic data (DNA and histone methylation) using the mouse as model system. The integration of these complete dataset revealed that meiotic and especially post-meiotic germ cells are the major contributors to the widespread functional and nonfunctional transcriptome complexity of the testis, and that this "promiscuous" spermatogenic transcription is resulting, at least partially, from an overall transcriptionally permissive chromatin state. We hypothesize that this particular open state of the chromatin results from the extensive chromatin remodeling that occurs during spermatogenesis which ultimately leads to the replacement of histones by protamines in the mature spermatozoa. Our results have important functional and evolutionary implications (e.g., regarding new gene birth and testicular gene expression evolution).Generally, these three large-scale projects of my thesis provide complete and massive datasets that constitute valuables resources for further functional and evolutionary analyses of mammalian genomes.
Resumo:
With the advancement of high-throughput sequencing and dramatic increase of available genetic data, statistical modeling has become an essential part in the field of molecular evolution. Statistical modeling results in many interesting discoveries in the field, from detection of highly conserved or diverse regions in a genome to phylogenetic inference of species evolutionary history Among different types of genome sequences, protein coding regions are particularly interesting due to their impact on proteins. The building blocks of proteins, i.e. amino acids, are coded by triples of nucleotides, known as codons. Accordingly, studying the evolution of codons leads to fundamental understanding of how proteins function and evolve. The current codon models can be classified into three principal groups: mechanistic codon models, empirical codon models and hybrid ones. The mechanistic models grasp particular attention due to clarity of their underlying biological assumptions and parameters. However, they suffer from simplified assumptions that are required to overcome the burden of computational complexity. The main assumptions applied to the current mechanistic codon models are (a) double and triple substitutions of nucleotides within codons are negligible, (b) there is no mutation variation among nucleotides of a single codon and (c) assuming HKY nucleotide model is sufficient to capture essence of transition- transversion rates at nucleotide level. In this thesis, I develop a framework of mechanistic codon models, named KCM-based model family framework, based on holding or relaxing the mentioned assumptions. Accordingly, eight different models are proposed from eight combinations of holding or relaxing the assumptions from the simplest one that holds all the assumptions to the most general one that relaxes all of them. The models derived from the proposed framework allow me to investigate the biological plausibility of the three simplified assumptions on real data sets as well as finding the best model that is aligned with the underlying characteristics of the data sets. -- Avec l'avancement de séquençage à haut débit et l'augmentation dramatique des données géné¬tiques disponibles, la modélisation statistique est devenue un élément essentiel dans le domaine dé l'évolution moléculaire. Les résultats de la modélisation statistique dans de nombreuses découvertes intéressantes dans le domaine de la détection, de régions hautement conservées ou diverses dans un génome de l'inférence phylogénétique des espèces histoire évolutive. Parmi les différents types de séquences du génome, les régions codantes de protéines sont particulièrement intéressants en raison de leur impact sur les protéines. Les blocs de construction des protéines, à savoir les acides aminés, sont codés par des triplets de nucléotides, appelés codons. Par conséquent, l'étude de l'évolution des codons mène à la compréhension fondamentale de la façon dont les protéines fonctionnent et évoluent. Les modèles de codons actuels peuvent être classés en trois groupes principaux : les modèles de codons mécanistes, les modèles de codons empiriques et les hybrides. Les modèles mécanistes saisir une attention particulière en raison de la clarté de leurs hypothèses et les paramètres biologiques sous-jacents. Cependant, ils souffrent d'hypothèses simplificatrices qui permettent de surmonter le fardeau de la complexité des calculs. Les principales hypothèses retenues pour les modèles actuels de codons mécanistes sont : a) substitutions doubles et triples de nucleotides dans les codons sont négligeables, b) il n'y a pas de variation de la mutation chez les nucléotides d'un codon unique, et c) en supposant modèle nucléotidique HKY est suffisant pour capturer l'essence de taux de transition transversion au niveau nucléotidique. Dans cette thèse, je poursuis deux objectifs principaux. Le premier objectif est de développer un cadre de modèles de codons mécanistes, nommé cadre KCM-based model family, sur la base de la détention ou de l'assouplissement des hypothèses mentionnées. En conséquence, huit modèles différents sont proposés à partir de huit combinaisons de la détention ou l'assouplissement des hypothèses de la plus simple qui détient toutes les hypothèses à la plus générale qui détend tous. Les modèles dérivés du cadre proposé nous permettent d'enquêter sur la plausibilité biologique des trois hypothèses simplificatrices sur des données réelles ainsi que de trouver le meilleur modèle qui est aligné avec les caractéristiques sous-jacentes des jeux de données. Nos expériences montrent que, dans aucun des jeux de données réelles, tenant les trois hypothèses mentionnées est réaliste. Cela signifie en utilisant des modèles simples qui détiennent ces hypothèses peuvent être trompeuses et les résultats de l'estimation inexacte des paramètres. Le deuxième objectif est de développer un modèle mécaniste de codon généralisée qui détend les trois hypothèses simplificatrices, tandis que d'informatique efficace, en utilisant une opération de matrice appelée produit de Kronecker. Nos expériences montrent que sur un jeux de données choisis au hasard, le modèle proposé de codon mécaniste généralisée surpasse autre modèle de codon par rapport à AICc métrique dans environ la moitié des ensembles de données. En outre, je montre à travers plusieurs expériences que le modèle général proposé est biologiquement plausible.
Resumo:
The interaction of atomic F and Cl with Si4H9 and Ge4H9 cluster models has been studied by using ab initio pseudopotentials and basis sets of increasing complexity. The results show that the effect of d orbitals is important in order to reproduce the experimental findings. However, the use of polarization functions in the atoms which are directly involved in the chemisorption bond leads to results which are very close to those obtained using extended basis sets. The local nature of the chemisorption bond is also interpreted by means of a Mulliken population analysis. For F-Si4H9 and Cl-Si4H9 the present results are in good agreement with previous ab initio all-electron calculations, and for the chemisorption of Cl on Si(111) and Ge(111) surfaces, good agreement is found with respect to the available experimental results as well as with previous slab calculations based on the local-density-functional formalism.
Resumo:
Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We presented an integrated hierarchical model of psychopathology that more accurately captures empirical patterns of comorbidity between clinical syndromes and personality disorders.In order to verify the structural validity of the model proposed, this study aimed to analyze the convergence between the Restructured Clinical (RC) scales and Personality scales (PSY-5) of the MMPI-2-RF and the Clinical Syndrome and Personality Disorder scales of the MCMI-III.The MMPI-2-RF and MCMI-III were administered to a clinical sample of 377 outpatients (167 men and 210 women).The structural hypothesiswas assessed by using a Confirmatory Factor Analytic design with four common superordinate factors. An independent-cluster-basis solution was proposed based on maximum likelihood estimation and the application of several fit indices.The fit of the proposed model can be considered as good and more so if we take into account its complexity.
Resumo:
Motivation: Hormone pathway interactions are crucial in shaping plant development, such as synergism between the auxin and brassinosteroid pathways in cell elongation. Both hormone pathways have been characterized in detail, revealing several feedback loops. The complexity of this network, combined with a shortage of kinetic data, renders its quantitative analysis virtually impossible at present.Results: As a first step towards overcoming these obstacles, we analyzed the network using a Boolean logic approach to build models of auxin and brassinosteroid signaling, and their interaction. To compare these discrete dynamic models across conditions, we transformed them into qualitative continuous systems, which predict network component states more accurately and can accommodate kinetic data as they become available. To this end, we developed an extension for the SQUAD software, allowing semi-quantitative analysis of network states. Contrasting the developmental output depending on cell type-specific modulators enabled us to identify a most parsimonious model, which explains initially paradoxical mutant phenotypes and revealed a novel physiological feature.
Resumo:
In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.
Resumo:
BACKGROUND: Workers with persistent disabilities after orthopaedic trauma may need occupational rehabilitation. Despite various risk profiles for non-return-to-work (non-RTW), there is no available predictive model. Moreover, injured workers may have various origins (immigrant workers), which may either affect their return to work or their eligibility for research purposes. The aim of this study was to develop and validate a predictive model that estimates the likelihood of non-RTW after occupational rehabilitation using predictors which do not rely on the worker's background. METHODS: Prospective cohort study (3177 participants, native (51%) and immigrant workers (49%)) with two samples: a) Development sample with patients from 2004 to 2007 with Full and Reduced Models, b) External validation of the Reduced Model with patients from 2008 to March 2010. We collected patients' data and biopsychosocial complexity with an observer rated interview (INTERMED). Non-RTW was assessed two years after discharge from the rehabilitation. Discrimination was assessed by the area under the receiver operating curve (AUC) and calibration was evaluated with a calibration plot. The model was reduced with random forests. RESULTS: At 2 years, the non-RTW status was known for 2462 patients (77.5% of the total sample). The prevalence of non-RTW was 50%. The full model (36 items) and the reduced model (19 items) had acceptable discrimination performance (AUC 0.75, 95% CI 0.72 to 0.78 and 0.74, 95% CI 0.71 to 0.76, respectively) and good calibration. For the validation model, the discrimination performance was acceptable (AUC 0.73; 95% CI 0.70 to 0.77) and calibration was also adequate. CONCLUSIONS: Non-RTW may be predicted with a simple model constructed with variables independent of the patient's education and language fluency. This model is useful for all kinds of trauma in order to adjust for case mix and it is applicable to vulnerable populations like immigrant workers.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
Rare diseases are typically chronic medical conditions of genetic etiology characterized by low prevalence and high complexity. Patients living with rare diseases face numerous physical, psychosocial and economic challenges that place them in the realm of health disparities. Congenital hypogonadotropic hypogonadism (CHH) is a rare endocrine disorder characterized by absent puberty and infertility. Little is known about the psychosocial impact of CHH on patients or their adherence to available treatments. This project aimed to examine the relationship between illness perceptions, depressive symptoms and adherence to treatment in men with CHH using the nursing-sensitive Health Promotion Model (HPM). A community based participatory research (CBPR) framework was employed as a model for empowering patients and overcoming health inequities. The study design used a sequential, explanatory mixed-methods approach. To reach dispersed CHH men, we used web-based recruitment and data collection (online survey). Subsequently, three patient focus groups were conducted to provide explanatory insights into the online survey (i.e. barriers to adherence, challenges of CHH, and coping/support) The online survey (n=101) revealed that CHH men struggle with adherence and often have long gaps in care (40% >1 year). They experience negative psychosocial consequences because of CHH and exhibit significantly increased rates of depression (p<0.001). Focus group participants (n=26) identified healthcare system, interpersonal, and personal factors as barriers to adherence. Further, CHH impacts quality of life and impedes psychosexual development in these men. The CHH men are active internet users who rely on the web forcrowdsourcing solutions and peer-to-peer support. Moreover, they are receptive to web-based interventions to address unmet health needs. This thesis contributes to nursing knowledge in several ways. First, it demonstrates the utility of the HPM as a valuable theoretical construct for understanding medication adherence and for assessing rare disease patients. Second, these data identify a range of unmet health needs that are targets for patient-centered interventions. Third, leveraging technology (high-tech) effectively extended the reach of nursing care while the CBPR approach and focus groups (high-touch) served as concurrent nursing interventions facilitating patient empowerment in overcoming health disparities. Last, these findings hold promise for developing e-health interventions to bridge identified shortfalls in care and activating patients for enhanced self- care and wellness -- Les maladies rares sont généralement de maladies chroniques d'étiologie génétique caractérisées par une faible prévalence et une haute complexité de traitement. Les patients atteints de maladies rares sont confrontés à de nombreux défis physiques, psychosociaux et économiques qui les placent dans une posture de disparité et d'inégalités en santé. L'hypogonadisme hypogonadotrope congénital (CHH) est un trouble endocrinien rare caractérisé par l'absence de puberté et l'infertilité. On sait peu de choses sur l'impact psychosocial du CHH sur les patients ou leur adhésion aux traitements disponibles. Ce projet vise à examiner la relation entre la perception de la maladie, les symptômes dépressifs et l'observance du traitement chez les hommes souffrant de CHH. Cette étude est modélisée à l'aide du modèle de la Promotion de la santé de Pender (HPM). Le cadre de l'approche communautaire de recherche participative (CBPR) a aussi été utilisé. La conception de l'étude a reposé sur une approche mixte séquentielle. Pour atteindre les hommes souffrant de CHH, un recrutement et une collecte de données ont été organisées électroniquement. Par la suite, trois groupes de discussion ont été menées avec des patients experts impliqués au sein d'organisations reliés aux maladies rares. Ils ont été invités à discuter certains éléments additionnels dont, les obstacles à l'adhésion au traitement, les défis généraux de vivre avec un CHH, et l'adaptation à la maladie en tenant compte du soutien disponible. Le sondage en ligne (n = 101) a révélé que les hommes souffrant de CHH ont souvent de longues périodes en rupture de soins (40% > 1 an). Ils vivent des conséquences psychosociales négatives en raison du CHH et présentent une augmentation significative des taux de dépression (p <0,001). Les participants aux groupes de discussion (n = 26) identifient dans l'ordre, les systèmes de soins de santé, les relations interpersonnelles, et des facteurs personnels comme des obstacles à l'adhésion. En outre, selon les participants, le CHH impacte négativement sur leur qualité de vie générale et entrave leur développement psychosexuel. Les hommes souffrant de CHH se considèrent être des utilisateurs actifs d'internet et comptent sur le web pour trouver des solutions pour trouver des ressources et y recherchent le soutien de leurs pairs (peer-to-peer support). En outre, ils se disent réceptifs à des interventions qui sont basées sur le web pour répondre aux besoins de santé non satisfaits. Cette thèse contribue à la connaissance des soins infirmiers de plusieurs façons. Tout d'abord, elle démontre l'utilité de la HPM comme une construction théorique utile pour comprendre l'adhésion aux traitements et pour l'évaluation des éléments de promotion de santé qui concernent les patients atteints de maladies rares. Deuxièmement, ces données identifient une gamme de besoins de santé non satisfaits qui sont des cibles pour des interventions infirmières centrées sur le patient. Troisièmement, méthodologiquement parlant, cette étude démontre que les méthodes mixtes sont appropriées aux études en soins infirmiers car elles allient les nouvelles technologies qui peuvent effectivement étendre la portée des soins infirmiers (« high-tech »), et l'approche CBPR par des groupes de discussion (« high-touch ») qui ont facilité la compréhension des difficultés que doivent surmonter les hommes souffrant de CHH pour diminuer les disparités en santé et augmenter leur responsabilisation dans la gestion de la maladie rare. Enfin, ces résultats sont prometteurs pour développer des interventions e-santé susceptibles de combler les lacunes dans les soins et l'autonomisation de patients pour une meilleure emprise sur les auto-soins et le bien-être.
Resumo:
ABSTRACT The traditional method of net present value (NPV) to analyze the economic profitability of an investment (based on a deterministic approach) does not adequately represent the implicit risk associated with different but correlated input variables. Using a stochastic simulation approach for evaluating the profitability of blueberry (Vaccinium corymbosum L.) production in Chile, the objective of this study is to illustrate the complexity of including risk in economic feasibility analysis when the project is subject to several but correlated risks. The results of the simulation analysis suggest that the non-inclusion of the intratemporal correlation between input variables underestimate the risk associated with investment decisions. The methodological contribution of this study illustrates the complexity of the interrelationships between uncertain variables and their impact on the convenience of carrying out this type of business in Chile. The steps for the analysis of economic viability were: First, adjusted probability distributions for stochastic input variables (SIV) were simulated and validated. Second, the random values of SIV were used to calculate random values of variables such as production, revenues, costs, depreciation, taxes and net cash flows. Third, the complete stochastic model was simulated with 10,000 iterations using random values for SIV. This result gave information to estimate the probability distributions of the stochastic output variables (SOV) such as the net present value, internal rate of return, value at risk, average cost of production, contribution margin and return on capital. Fourth, the complete stochastic model simulation results were used to analyze alternative scenarios and provide the results to decision makers in the form of probabilities, probability distributions, and for the SOV probabilistic forecasts. The main conclusion shown that this project is a profitable alternative investment in fruit trees in Chile.
Resumo:
Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches.
Resumo:
PURPOSE: Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. METHODS: The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. RESULTS: The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. CONCLUSION: The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.
Resumo:
This article examines the mainstream categorical definition of coreference as "identity of reference." It argues that coreference is best handled when identity is treated as a continuum, ranging from full identity to non-identity, with room for near-identity relations to explain currently problematic cases. This middle ground is needed to account for those linguistic expressions in real text that stand in relations that are neither full coreference nor non-coreference, a situation that has led to contradictory treatment of cases in previous coreference annotation efforts. We discuss key issues for coreference such as conceptual categorization, individuation, criteria of identity, and the discourse model construct. We redefine coreference as a scalar relation between two (or more) linguistic expressions that refer to discourse entities considered to be at the same granularity level relevant to the linguistic and pragmatic context. We view coreference relations in terms of mental space theory and discuss a large number of real life examples that show near-identity at different degrees.
Resumo:
As the development of integrated circuit technology continues to follow Moore’s law the complexity of circuits increases exponentially. Traditional hardware description languages such as VHDL and Verilog are no longer powerful enough to cope with this level of complexity and do not provide facilities for hardware/software codesign. Languages such as SystemC are intended to solve these problems by combining the powerful expression of high level programming languages and hardware oriented facilities of hardware description languages. To fully replace older languages in the desing flow of digital systems SystemC should also be synthesizable. The devices required by modern high speed networks often share the same tight constraints for e.g. size, power consumption and price with embedded systems but have also very demanding real time and quality of service requirements that are difficult to satisfy with general purpose processors. Dedicated hardware blocks of an application specific instruction set processor are one way to combine fast processing speed, energy efficiency, flexibility and relatively low time-to-market. Common features can be identified in the network processing domain making it possible to develop specialized but configurable processor architectures. One such architecture is the TACO which is based on transport triggered architecture. The architecture offers a high degree of parallelism and modularity and greatly simplified instruction decoding. For this M.Sc.(Tech) thesis, a simulation environment for the TACO architecture was developed with SystemC 2.2 using an old version written with SystemC 1.0 as a starting point. The environment enables rapid design space exploration by providing facilities for hw/sw codesign and simulation and an extendable library of automatically configured reusable hardware blocks. Other topics that are covered are the differences between SystemC 1.0 and 2.2 from the viewpoint of hardware modeling, and compilation of a SystemC model into synthesizable VHDL with Celoxica Agility SystemC Compiler. A simulation model for a processor for TCP/IP packet validation was designed and tested as a test case for the environment.