791 resultados para missing values
Resumo:
A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3 fb−1 of proton-proton collision data at √s = 8TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale ʌ below 63TeV are excluded, independently of tan β. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090GeV are excluded.
Resumo:
The purpose of this study is to investigate the effects of predictor variable correlations and patterns of missingness with dichotomous and/or continuous data in small samples when missing data is multiply imputed. Missing data of predictor variables is multiply imputed under three different multivariate models: the multivariate normal model for continuous data, the multinomial model for dichotomous data and the general location model for mixed dichotomous and continuous data. Subsequent to the multiple imputation process, Type I error rates of the regression coefficients obtained with logistic regression analysis are estimated under various conditions of correlation structure, sample size, type of data and patterns of missing data. The distributional properties of average mean, variance and correlations among the predictor variables are assessed after the multiple imputation process. ^ For continuous predictor data under the multivariate normal model, Type I error rates are generally within the nominal values with samples of size n = 100. Smaller samples of size n = 50 resulted in more conservative estimates (i.e., lower than the nominal value). Correlation and variance estimates of the original data are retained after multiple imputation with less than 50% missing continuous predictor data. For dichotomous predictor data under the multinomial model, Type I error rates are generally conservative, which in part is due to the sparseness of the data. The correlation structure for the predictor variables is not well retained on multiply-imputed data from small samples with more than 50% missing data with this model. For mixed continuous and dichotomous predictor data, the results are similar to those found under the multivariate normal model for continuous data and under the multinomial model for dichotomous data. With all data types, a fully-observed variable included with variables subject to missingness in the multiple imputation process and subsequent statistical analysis provided liberal (larger than nominal values) Type I error rates under a specific pattern of missing data. It is suggested that future studies focus on the effects of multiple imputation in multivariate settings with more realistic data characteristics and a variety of multivariate analyses, assessing both Type I error and power. ^
Resumo:
With most clinical trials, missing data presents a statistical problem in evaluating a treatment's efficacy. There are many methods commonly used to assess missing data; however, these methods leave room for bias to enter the study. This thesis was a secondary analysis on data taken from TIME, a phase 2 randomized clinical trial conducted to evaluate the safety and effect of the administration timing of bone marrow mononuclear cells (BMMNC) for subjects with acute myocardial infarction (AMI).^ We evaluated the effect of missing data by comparing the variance inflation factor (VIF) of the effect of therapy between all subjects and only subjects with complete data. Through the general linear model, an unbiased solution was made for the VIF of the treatment's efficacy using the weighted least squares method to incorporate missing data. Two groups were identified from the TIME data: 1) all subjects and 2) subjects with complete data (baseline and follow-up measurements). After the general solution was found for the VIF, it was migrated Excel 2010 to evaluate data from TIME. The resulting numerical value from the two groups was compared to assess the effect of missing data.^ The VIF values from the TIME study were considerably less in the group with missing data. By design, we varied the correlation factor in order to evaluate the VIFs of both groups. As the correlation factor increased, the VIF values increased at a faster rate in the group with only complete data. Furthermore, while varying the correlation factor, the number of subjects with missing data was also varied to see how missing data affects the VIF. When subjects with only baseline data was increased, we saw a significant rate increase in VIF values in the group with only complete data while the group with missing data saw a steady and consistent increase in the VIF. The same was seen when we varied the group with follow-up only data. This essentially showed that the VIFs steadily increased when missing data is not ignored. When missing data is ignored as with our comparison group, the VIF values sharply increase as correlation increases.^
Resumo:
The fuzzy min–max neural network classifier is a supervised learning method. This classifier takes the hybrid neural networks and fuzzy systems approach. All input variables in the network are required to correspond to continuously valued variables, and this can be a significant constraint in many real-world situations where there are not only quantitative but also categorical data. The usual way of dealing with this type of variables is to replace the categorical by numerical values and treat them as if they were continuously valued. But this method, implicitly defines a possibly unsuitable metric for the categories. A number of different procedures have been proposed to tackle the problem. In this article, we present a new method. The procedure extends the fuzzy min–max neural network input to categorical variables by introducing new fuzzy sets, a new operation, and a new architecture. This provides for greater flexibility and wider application. The proposed method is then applied to missing data imputation in voting intention polls. The micro data—the set of the respondents’ individual answers to the questions—of this type of poll are especially suited for evaluating the method since they include a large number of numerical and categorical attributes.
Resumo:
Objective: An estimation of cut-off points for the diagnosis of diabetes mellitus (DM) based on individual risk factors. Methods: A subset of the 1991 Oman National Diabetes Survey is used, including all patients with a 2h post glucose load >= 200 mg/dl (278 subjects) and a control group of 286 subjects. All subjects previously diagnosed as diabetic and all subjects with missing data values were excluded. The data set was analyzed by use of the SPSS Clementine data mining system. Decision Tree Learners (C5 and CART) and a method for mining association rules (the GRI algorithm) are used. The fasting plasma glucose (FPG), age, sex, family history of diabetes and body mass index (BMI) are input risk factors (independent variables), while diabetes onset (the 2h post glucose load >= 200 mg/dl) is the output (dependent variable). All three techniques used were tested by use of crossvalidation (89.8%). Results: Rules produced for diabetes diagnosis are: A- GRI algorithm (1) FPG>=108.9 mg/dl, (2) FPG>=107.1 and age>39.5 years. B- CART decision trees: FPG >=110.7 mg/dl. C- The C5 decision tree learner: (1) FPG>=95.5 and 54, (2) FPG>=106 and 25.2 kg/m2. (3) FPG>=106 and =133 mg/dl. The three techniques produced rules which cover a significant number of cases (82%), with confidence between 74 and 100%. Conclusion: Our approach supports the suggestion that the present cut-off value of fasting plasma glucose (126 mg/dl) for the diagnosis of diabetes mellitus needs revision, and the individual risk factors such as age and BMI should be considered in defining the new cut-off value.
Resumo:
We present a new method for ecologically sustainable land use planning within multiple land use schemes. Our aims were (1) to develop a method that can be used to locate important areas based on their ecological values; (2) to evaluate the quality, quantity, availability, and usability of existing ecological data sets; and (3) to demonstrate the use of the method in Eastern Finland, where there are requirements for the simultaneous development of nature conservation, tourism, and recreation. We compiled all available ecological data sets from the study area, complemented the missing data using habitat suitability modeling, calculated the total ecological score (TES) for each 1 ha grid cell in the study area, and finally, demonstrated the use of TES in assessing the success of nature conservation in covering ecologically valuable areas and locating ecologically sustainable areas for tourism and recreational infrastructure. The method operated quite well at the level required for regional and local scale planning. The quality, quantity, availability, and usability of existing data sets were generally high, and they could be further complemented by modeling. There are still constraints that limit the use of the method in practical land use planning. However, as increasing data become available and open access, and modeling tools improve, the usability and applicability of the method will increase.