810 resultados para minorities in science
Resumo:
The importance of science and technology (S&T) in Small Island Developing States (SIDS) is clearly articulated in Chapter XI, paragraphs 57, 58, 61 and 62 of the Mauritius Strategy for the Further Implementation of the Programme of Action for Sustainable Development of Small Island Developing States (MSI). At the regional level, the Heads of Government of the Caribbean Community (CARICOM) noted the challenge that CARICOM member States face in competing in this new international economic environment in which the impact of scientific and technological change has created a knowledge-based global economy. Given the importance of S&T to development of Caribbean SIDS, the Economic Commission for Latin America and the Caribbean (ECLAC) Subregional Headquarters for the Caribbean embarked on a study to determine the causes and consequences of low rates of specialisation in S&T with a view to making recommendations for development of strategies for addressing these challenges. Data on postgraduate (Master of Science, Master of Philosophy and Doctor of Philosophy) enrolment and graduation in agriculture, engineering and the sciences from the three campuses of the University of the West Indies (UWI) as well as from the University of Technology in Jamaica and the University of Trinidad and Tobago (UTT) were examined and analysed. Face-to-face interviews were also held with key personnel from these institutions and a questionnaire was also served to individuals in key institutions. Results of the study revealed that although the number of students enrolled in higher degree programmes has increased in absolute terms, they are decreasing in relative terms. However, enrolment in agriculture has indeed declined while enrolment rates in engineering, although increasing, were not significantly high. Market forces have proved to be a main reason for this trend while facilities for the conduct and supervision of cutting-edge research, the disconnect between science and industry and societal labelling of scientists as “misfits” are also contributing to the situation. This has resulted in a reduced desire by students at all levels of the school system and faculty to be involved in S&T; lack of innovation; a better staffed private, as compared with public, sector; and poor remuneration in science-based employment. There also appears to be a gender bias in enrolment with more males than females being enrolled in engineering while the opposite is apparent in agriculture and the sciences. Recommendations for remedying this situation range from increasing investment in S&T, creating linkages between science and industry as well as with the international community, raising awareness of the value of S&T at all levels of the education system to informing policy to stimulate the science – innovation interface so as to promote intellectual property rights.
Resumo:
Increasing public interest in science information in a digital and 2.0 science era promotes a dramatically, rapid and deep change in science itself. The emergence and expansion of new technologies and internet-based tools is leading to new means to improve scientific methodology and communication, assessment, promotion and certification. It allows methods of acquisition, manipulation and storage, generating vast quantities of data that can further facilitate the research process. It also improves access to scientific results through information sharing and discussion. Content previously restricted only to specialists is now available to a wider audience. This context requires new management systems to make scientific knowledge more accessible and useable, including new measures to evaluate the reach of scientific information. The new science and research quality measures are strongly related to the new online technologies and services based in social media. Tools such as blogs, social bookmarks and online reference managers, Twitter and others offer alternative, transparent and more comprehensive information about the active interest, usage and reach of scientific publications. Another of these new filters is the Research Blogging platform, which was created in 2007 and now has over 1,230 active blogs, with over 26,960 entries posted about peer-reviewed research on subjects ranging from Anthropology to Zoology. This study takes a closer look at RB, in order to get insights into its contribution to the rapidly changing landscape of scientific communication.
Resumo:
The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.
Resumo:
The concept of feminist metistic resilience postulates that the voiceless, the marginalized and the minority in societies employ strategies in order to turn tables in their favor. This study presents a qualitative analysis of how women, considered to be the minority, negotiate their situatedness in science fields in order to effect change in their lives or that of the society and why they become successful. By “situatedness,” I refer to the everyday life of women as they live and encounter people, society and culture, especially, the life of women who have transcended the culturally stipulated role of women and are excelling in a male dominated field. The study, in different dimensions, conceptualizes the reason for the fewer number of women in science; looks at how scientific methods and practices inhibit the development of women in science; and, finally, interrogates the question of objectivity in science. It becomes apparent, through feminist metistic resilience, that women become successful when they accept conventional practices in scientific arrangements and structures. They accept the practices by embracing and not questioning structures and arrangements that have shaped the field of science and by shifting shapes and assuming different forms in order to adapt to conditions they encounter. Apart from adapting and shape shifting, the women also become successful through environmental and social influences. My analysis suggests that more women can be encouraged to pursue science when women practicing science begin to question structures and arrangements that have shaped the practice of science over the centuries. The overall findings of the research provide implications for policy makers, educators and feminist researchers.
Resumo:
This study examines perceived ethnic discrimination (as opposed to “objective” discrimination). It includes a discussion of definitions of discrimination and attempts to measure it, and a review of findings on the distribution of discrimination experiences among minorities. The aim of the study is to determine the influence of factors that increase the risk of exposure to situations in which discrimination can take place (exposure hypothesis), and those that sensitize perceptions and give rise to different frequencies of subjective feelings of discrimination (sensitization hypothesis). A standardized questionnaire was administered to a random sample of German-born persons of Turkish and Greek origin and Aussiedler (ethnic Germans born in the former Soviet Union) (total N = 301). Minorities of non-German, especially of Turkish origin reported significantly more discrimination than Aussiedler in a set of nineteen everyday situations. A bivariate correlation was found between number of incidents reported and employment status with homemakers reporting the fewest incidents. However, multiple regression analysis yielded no significant effect, thus lending no clear support to the exposure hypothesis. Frequency of contacts with German friends has no effect and seems not to entail an increase in exposure opportunities, but may lead to a desensitization to discrimination due to the erosion of the relevance of ethnic categories. On the other hand, an influence through intra-ethnic contacts clearly occurs, as frequency of contact with co-ethnic friends exerts a strong positive effect on experienced discrimination. A similar effect was found for ethnic self-awareness. The latter finding confirms the sensitization hypothesis.
Resumo:
This study is an analytical investigation of the nature and implications of the current conceptions of scientific misconduct, arguing that the question of what constitutes misconduct in science is significantly more complex than what conventionally has been believed. Complicating the definitions of misconduct are the differences between professional science and non-scientific professions, in their respective norms of what constitutes valid knowledge, and what counts as appropriate and inappropriate practice. While institutionalized science claims that there is clear differentiation between its standards of validity and those of the non-scientific professions, this paper argues that, when it comes to misconduct, the perceived boundaries between the scientific and non-scientific professions are breached; the practice standards that science currently employs in self-policing misconduct have come to resemble the minimal juridical standards of practice that other professions employ. This study attempts, despite erosion of these traditional boundaries, to move from legalistic standards of scientific practice to intramural standards of practice, and in so doing, to hold scientific practice to a higher standard than ordinary public conduct. The result is a clearer understanding of scientific misconduct to aid those individual scientists who are required to make onerous determinations about the appropriateness of specific practices by their peers. ^
Resumo:
Better access to knowledge and knowledge production has to be reconsidered as key to successful individual and social mitigation and adaptation strategies for global change. Indeed, concepts of sustainable development imply a transformation of science towards fostering democratisation of knowledge production and the development of knowledge societies as a strategic goal. This means to open the process of scientific knowledge production while simultaneously empowering people to implement their own visions for sustainable development. Advocates of sustainability science support this transformation. In transdisciplinary practice, they advance equity and accountability in the access to and production of knowledge at the science–society interface. UNESCO points to advancements, yet Northern dominance persists in knowledge production as well as in technology design and transfer. Further, transdisciplinary practice remains experimental and hampered by inadequate and asymmetrically equipped institutions in the North and South and related epistemological and operational obscurity. To help identify clear, practicable transdisciplinary approaches, I recommend examining the institutional route – i.e., the learning and adaptation process – followed in concrete cases. The transdisciplinary Eastern and Southern Africa Partnership Programme (1998–2013) is a case ripe for such examination. Understanding transdisciplinarity as an integrative approach, I highlight ESAPP’s three key principles for a more democratised knowledge production for sustainable development: (1) integration of scientific and “non-scientific” knowledge systems; (2) integration of social actors and institutions; and (3) integrative learning processes. The analysis reveals ESAPP’s achievements in contributing to more democratic knowledge production and South ownership in the realm of sustainable development.