979 resultados para mining areas
Resumo:
Climate change is on the policy agenda at the global level, with the aim of understanding and reducing its causes and to mitigate its consequences. In most of the countries and international organisms UNO, OECD, EC, etc … the efforts and debates have been directed to know the possible causes, to predict the future evolution of some variable conditioners, and trying to make studies to fight against the effects or to delay the negative evolution of such. Nevertheless, the elaboration of a global model was not boarded that can help to choose the best alternative between the feasible ones, to elaborate the strategies and to evaluate the costs. As in all natural, technological and social changes, the best-prepared countries will have the best bear and the more rapid recover. In all the geographic areas the alternative will not be the same one, but the model should help us to make the appropriated decision. It is essential to know those areas that are more sensitive to the negative effects of climate change, the parameters to take into account for its evaluation, and comprehensive plans to deal with it. The objective of this paper is to elaborate a mathematical model support of decisions, that will allow to develop and to evaluate alternatives of adaptation to the climatic change of different communities in Europe and Latin-America, mainly, in vulnerable areas to the climatic change, considering in them all the intervening factors. The models will take into consideration criteria of physical type (meteorological, edaphic, water resources), of use of the ground (agriculturist, forest, mining, industrial, urban, tourist, cattle dealer), economic (income, costs, benefits, infrastructures), social (population), politician (implementation, legislation), educative (Educational programs, diffusion), sanitary and environmental, at the present moment and the future.
Resumo:
A sustainable manufacturing process must rely on an also sustainable raw materials and energy supply. This paper is intended to show the results of the studies developed on sustainable business models for the minerals industry as a fundamental previous part of a sustainable manufacturing process. As it has happened in other economic activities, the mining and minerals industry has come under tremendous pressure to improve its social, developmental, and environmental performance. Mining, refining, and the use and disposal of minerals have in some instances led to significant local environmental and social damage. Nowadays, like in other parts of the corporate world, companies are more routinely expected to perform to ever higher standards of behavior, going well beyond achieving the best rate of return for shareholders. They are also increasingly being asked to be more transparent and subject to third-party audit or review, especially in environmental aspects. In terms of environment, there are three inter-related areas where innovation and new business models can make the biggest difference: carbon, water and biodiversity. The focus in these three areas is for two reasons. First, the industrial and energetic minerals industry has significant footprints in each of these areas. Second, these three areas are where the potential environmental impacts go beyond local stakeholders and communities, and can even have global impacts, like in the case of carbon. So prioritizing efforts in these areas will ultimately be a strategic differentiator as the industry businesses continues to grow. Over the next forty years, world?s population is predicted to rise from 6.300 million to 9.500 million people. This will mean a huge demand of natural resources. Indeed, consumption rates are such that current demand for raw materials will probably soon exceed the planet?s capacity. As awareness of the actual situation grows, the public is demanding goods and services that are even more environmentally sustainable. This means that massive efforts are required to reduce the amount of materials we use, including freshwater, minerals and oil, biodiversity, and marine resources. It?s clear that business as usual is no longer possible. Today, companies face not only the economic fallout of the financial crisis; they face the substantial challenge of transitioning to a low-carbon economy that is constrained by dwindling natural resources easily accessible. Innovative business models offer pioneering companies an early start toward the future. They can signal to consumers how to make sustainable choices and provide reward for both the consumer and the shareholder. Climate change and carbon remain major risk discontinuities that we need to better understand and deal with. In the absence of a global carbon solution, the principal objective of any individual country should be to reduce its global carbon emissions by encouraging conservation. The mineral industry internal response is to continue to focus on reducing the energy intensity of our existing operations through energy efficiency and the progressive introduction of new technology. Planning of the new projects must ensure that their energy footprint is minimal from the start. These actions will increase the long term resilience of the business to uncertain energy and carbon markets. This focus, combined with a strong demand for skills in this strategic area for the future requires an appropriate change in initial and continuing training of engineers and technicians and their awareness of the issue of eco-design. It will also need the development of measurement tools for consistent comparisons between companies and the assessments integration of the carbon footprint of mining equipments and services in a comprehensive impact study on the sustainable development of the Economy.
Resumo:
The purpose of this guide is to assist investigators conducting geologic hazard assessments with the understanding, detection, and characterization of surface features related to subsidence from underground coal mining. Subsidence related to underground coal mining can present serious problems to new and/or existing infrastructure, utilities, and facilities. For example, heavy equipment driving over the ground surface during construction processes may punch into voids created by sinkholes or cracks, resulting in injury to persons and property. Abandoned underground mines also may be full of water, and if punctured, can flood nearby areas. Furthermore, the integrity of rigid structures such as buildings, dams and bridges may be compromised if mining subsidence results in differential movement at the ground surface. Subsidence of the ground surface is a phenomenon associated with the removal of material at depth, and may occur coincident with mining, gradually over time, or sometimes suddenly, long after mining operations have ceased (Gray and Bruhn, 1984). The spatial limits of underground coal mines may extend for great distances beyond the surface operations of a mine, in some cases more than 10 miles for an individual mine. When conducting geologic hazard assessments, several remote investigation methods can be used to observe surface features related to underground mining subsidence. LiDAR-derived DEMs are generally the most useful method available for identifying these features because the bare earth surface can be viewed. However, due to limitations in the availability of LiDAR data, other methods often need to be considered when investigating surface features related to underground coal mining subsidence, such as Google Earth and aerial imagery. Mine maps, when available, can be viewed in tandem with these datasets, potentially improving the confidence of any possible mining subsidence-related features observed remotely. However, maps for both active and abandoned mines may be incomplete or unavailable. Therefore, it is important to be able to recognize possible surface features related to underground mining subsidence. This guide provides examples of surface subsidence features related to the two principal underground coal mining methods used in the United States: longwall mining and room and pillar mining. The depth and type of mining, geologic conditions, hydrologic conditions, and time are all factors that may influence the type of features that manifest at the surface. This guide provides investigators a basic understanding about the size, character and conditions of various surface features that occur as a result of underground mining subsidence.
Resumo:
Stochastic simulation is a recognised tool for quantifying the spatial distribution of geological uncertainty and risk in earth science and engineering. Metals mining is an area where simulation technologies are extensively used; however, applications in the coal mining industry have been limited. This is particularly due to the lack of a systematic demonstration illustrating the capabilities these techniques have in problem solving in coal mining. This paper presents two broad and technically distinct areas of applications in coal mining. The first deals with the use of simulation in the quantification of uncertainty in coal seam attributes and risk assessment to assist coal resource classification, and drillhole spacing optimisation to meet pre-specified risk levels at a required confidence. The second application presents the use of stochastic simulation in the quantification of fault risk, an area of particular interest to underground coal mining, and documents the performance of the approach. The examples presented demonstrate the advantages and positive contribution stochastic simulation approaches bring to the coal mining industry
Resumo:
Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.
Resumo:
With the explosive growth of the volume and complexity of document data (e.g., news, blogs, web pages), it has become a necessity to semantically understand documents and deliver meaningful information to users. Areas dealing with these problems are crossing data mining, information retrieval, and machine learning. For example, document clustering and summarization are two fundamental techniques for understanding document data and have attracted much attention in recent years. Given a collection of documents, document clustering aims to partition them into different groups to provide efficient document browsing and navigation mechanisms. One unrevealed area in document clustering is that how to generate meaningful interpretation for the each document cluster resulted from the clustering process. Document summarization is another effective technique for document understanding, which generates a summary by selecting sentences that deliver the major or topic-relevant information in the original documents. How to improve the automatic summarization performance and apply it to newly emerging problems are two valuable research directions. To assist people to capture the semantics of documents effectively and efficiently, the dissertation focuses on developing effective data mining and machine learning algorithms and systems for (1) integrating document clustering and summarization to obtain meaningful document clusters with summarized interpretation, (2) improving document summarization performance and building document understanding systems to solve real-world applications, and (3) summarizing the differences and evolution of multiple document sources.
Resumo:
One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration
Resumo:
Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (>25 versus ≤10 individuals per 100 m2), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones.
Resumo:
The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga