905 resultados para mineral trioxide aggregate
Resumo:
Introduction: Both Mineral Trioxide Aggregate (MTA) and Portland cement (PC) have been highlighted because of their favorable biological properties, with extensive applications in Endodontics, including the possibility of using into root canal filling. Objective: This article reviews literature related to MTA and PC comparing their physical, chemical and biological properties, as well as their indications. Literature review: Literature reports studies revealing the similarities between these materials’ properties, including both biocompatibility and bone repair induction. Moreover, there is the need for the development of a root canal sealer based on these materials (MTA and PC). Conclusion: MTA and CP show promissory perspective both in Dentistry and Endodontics.
Resumo:
This case report presents an apical radicular perforation management using new calcium silicate-based cement (Biodentine) in a combined endodontic-periodontal lesion. The presence of apical radicular perforation may interfere in the endodontic treatment prognosis. Radicular perforation filling with bioactive cement through endodontic surgery is a possible treatment. This study presents an apical radicular perforation with periodontal involvement, due to alveolar bone loss on the buccal radicular surface from an incorrect intracanal preparation for the fiber post placing. The chosen alternative was a periapical surgery, the perforation was filled with a silicate and calcium chloride bioactive cement (Biodentine; Septodont, Saint-Maur-des-Fosses Cedex, France), and the radicular surface was etched with citric acid, because the access from root canal was impossible. The follow-up was for 8 months, through clinical and radiographic analysis. At the end of the follow-up, radiographic analyses showed the bone healing, and no clinical changes in periodontal probing depth, gingival recession, and the height of the interproximal mesial and distal papillae were observed. The root perforation treatment has a difficult management, especially when the dental root has a simultaneous periodontal commitment. The Biodentine proves to be a promising material for use in these situations.
Resumo:
The present study evaluated the radiopacity and flow of different endodontic sealers: AH Plus, Endo CPM, MTA Fillapex, Sealapex, Epiphany, and Epiphany SE. For the radiopacity test, six specimens measuring 10mm in diameter and 1mm in thickness were fabricated from each material. They were radiographed on an occlusal film alongside an aluminum step wedge. Radiographs were digitized to determine the radiopacity equivalence in millimeters of aluminum. To evaluate the flow, a 120 g load was placed on top of a glass slab containing 0.05 } 0.005ml of sealer. The diameters of each material were measured (mm) with a caliper and samples were photographed. Digitized images were analyzed using the UTHSCSA Image Tool for Windows software, to determine the sealer area (mm2). Data were submitted to ANOVA and Tukey's test at 5% significance. AH Plus and Epiphany SE presented the greatest radiopacity (12.5 mm Al and 12.0 mm Al, respectively) (p>0.05), followed by Epiphany (9.6 mm Al) and Fillapex (8.9 mm Al). Endo CPM (5.46 mm Al) and Sealapex (5.51 mm Al) presented lower radiopacity. MTA Fillapex presented significantly higher values of flow than other sealers (33.11 mm and 844.9 mm2). AH Plus, Epiphany, and Epiphany SE had similar values. Endo CPM (21.05 mm and 342.8 mm2) and Sealapex (19.98 mm and 352.5 mm2) presented the lowest flow values (p>0.05). All sealers presented radiopacity and flow values according to ISO and ANSI/ADA recommendations.
Resumo:
The aim of this study was to evaluate the physicochemical properties and bioactivity of two formulations of calcium silicate-based cements containing additives (CSCM) or resin (CSCR), associated with radiopacifying agents zirconium oxide (ZrO2) and niobium oxide (Nb2O5) as micro- and nanoparticles; calcium tungstate (CaWO4); and bismuth oxide (Bi2O3). MTA Angelus was used as control. Methods. Surface features and bioactivity were evaluated by scanning electron microscopy and the chemical composition by energy dispersive X-ray spectrometry (EDS-X). Results. CSCM and CSCR presented larger particle sizes than MTA. Hydroxyapatite deposits were found on the surface of some materials, especially when associated with the radiopacifier with ZrO2 nanoparticles. All the cements presented calcium, silicon, and aluminum in their composition. Conclusion. Both calcium silicate-based cements presented composition and bioactivity similar to MTA when associated with the radiopacifiers evaluated.
Resumo:
The Mineral Trioxide Aggregate (MTA) has excellent biological property. However, its consistency makes it difficult to be inserted into retrograde cavities. Objective:To evaluate the ability of different methods to fill retrograde cavities with MTA. Material and methods: Root canals of thirty single-rooted resin teeth were prepared and filled. After the cut of 3 mm short of apical third, retrograde cavities with 3 mm deep were prepared using an ultrasound device and retrotips (CVD, São José dos Campos, SP, Brazil). The retrograde preparation was evaluate by using an operative microscope (D.F. Vasconcellos, São Paulo, SP, Brazil). The teeth were randomly divided into three groups (n = 10), according to the method: 1) condenser (Trinity, São Paulo, SP, Brazil); 2) MTA applicator (Angelus, Londrina, Brazil) + condenser; 3) condenser associated with ultrasound (CVD, São José dos Campos, SP, Brazil). After the filling of retrograde cavities with white MTA (Angelus, Londrina, Brazil), teeth were radiographed using a digital system (Kodak RVG 6000, Rochester, NY, USA). The images were analyzed by UTHSCSA Image Tool 3.0 software. The percentage of filling was calculated by the proportion between the total area of retrograde cavity and the filled area. The radiographic density mean of each third of retrograde cavity filled with MTA was measured by using the histogram tool of the software. The results were submitted to ANOVA and Tukey tests, with 5% of significance. Results: There was no difference in percentage of filling among the groups (p > 0.05) (approximately 85%). By comparing the thirds, the condenser and MTA applicator groups showed higher density for apical and middle third than cervical third (p < 0.05). The ultrasound group presented similar density among the thirds. Conclusion: The filling ability was similar for the studied methods. Ultrasound promoted better distribution of MTA in retrograde cavity, but did not increase the density of material.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this study was to characterize and to evaluate the bioactivity potential of experimental root canal sealers (ES) based on Portland cement, epoxy resin with nano- and micro-particles of niobium or zirconium oxide used as radiopacifiers in comparison to AH Plus and MTA Fillapex. Methods Specimens of the sealers (10 mm in diameter × 1 mm thick) were prepared and the radiopacity was evaluated according to ISO 6876 (2012) specifications. Characterization of the sealers was performed under the scanning electron microscope (SEM) immediately after setting and after immersion for 28 days in Hank's balanced salt solution (HBSS). In addition X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were also performed. The pH and calcium ion release were measured after 1, 7, 14, 21 and 28 days after completion of seating using a digital pH meter and an atomic absorption spectrophotometer, respectively. Results The experimental sealers exhibited an average radiopacity of 2.5 mm thickness of aluminum, which was similar to MTA Fillapex (P > 0.05) and inferior to AH Plus (P < 0.05). AH Plus did not show bioactivity. Although the experimental sealers did not exhibit the formation of hydration product, they encouraged the deposition of crystalline spherical structures of calcium deficient phosphate. The highest pH and calcium release values were observed with the experimental sealers (P < 0.01). ES-Nb-micro was the only sealer to present hexagonal shaped crystal deposition. Significance Novel root canal sealers based on a mixture of Portland cement, epoxy resin and radiopacifier exhibited a degree of bioactivity although no evidence of cement hydration was demonstrated on material characterization. The radiopacifier particle size had limited effect on the sealer microstructure and chemical properties.
Análise físico-química do MTA e do cimento Portland associado a quatro diferentes radiopacificadores
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Influence of diabetes mellitus on tissue response to MTA and its ability to stimulate mineralization
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to evaluate, ex vivo, the nanoleakage in dentinal tubules, the linear infiltration of silver nitrate in the dentin wall/root-end filling material interface, and the presence of gaps in this interface in root-end cavities filled with 4 filling materials. Forty-eight disto-buccal root canals of maxillary molars were instrumented and filled. Retrograde cavities were prepared with ultrasonic points (apical 2 mm). The samples were divided into 2 control groups (n = 4) and 4 experimental groups (n = 10): Group I white mineral trioxide aggregate (MTA); Group II Super EBA; Group III Portland cement; and Group IV Sealer 26. After 1 week, the specimens were subjected to silver nitrate and prepared for SEM (backscattered electrons). In the apical-apical segment, an area with significantly higher leakage was observed for Super EBA, followed by Portland cement, MTA, and Sealer 26 (P = 0.0054). In the medium and cervical segments, all materials showed the same leakage behavior (P = 0.1815 and P = 0.1723, respectively). The linear infiltration at the dentin wall/root-end filling material interface was higher with Super EBA than the other groups. No differences in the percentage of gaps along the 3 mm of dentin wall/root-end filling material interface between the 4 materials were evident (P > 0.05). Nanoleakage occurred mainly in the apical segment of the samples, and Super EBA showed the highest values. The area and linear leakage were lower in the middle and coronal segments, regardless of the root-end filling material. No material perfectly sealed the root-end cavities, which allowed for the leakage occurrence. Microsc. Res. Tech. 75:796800, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Aim To compare the changes in the surface structure and elemental distribution, as well as the percentage of ion release, of four calcium silicate-containing endodontic materials with a well-established epoxy resin-based sealer, submitted to a solubility test. Methodology Solubility of AH Plus, iRoot SP, MTA Fillapex, Sealapex and MTA-Angelus (MTA-A) was tested according to ANSI/ADA Specification 57. The deionized water used in the solubility test was submitted to atomic absorption spectrophotometry to determine and quantify Ca2+, Na+, K+, Zn2+, Ni2+ and Pb2+ ions release. In addition, the outer and inner surfaces of nonsubmitted and submitted samples of each material to the solubility test were analysed by means of scanning electron microscopy and energy-dispersive spectroscopy (SEM/EDX). Statistical analysis was performed by using one-way anova and Tukeys post hoc tests (a = 0.05). Results Solubility results, in percentage, sorted in an increasing order were -1.24 +/- 0.19 (MTA-A), 0.28 +/- 0.08 (AH Plus), 5.65 +/- 0.80 (Sealapex), 14.89 +/- 0.73 (MTA Fillapex) and 20.64 +/- 1.42 (iRoot SP). AH Plus and MTA-A were statistically similar (P > 0.05), but different from the other materials (P < 0.05). High levels of Ca2+ ion release were observed in all groups except AH Plus sealer. MTA-A also had the highest release of Na2+ and K+ ions. Zn+2 ion release was observed only with AH Plus and Sealapex sealers. After the solubility test, all surfaces had morphological changes. The loss of matrix was evident and the filler particles were more distinguishable. EDX analysis displayed high levels of calcium and carbon at the surface of Sealapex, MTA Fillapex and iRoot SP. Conclusions AH Plus and MTA-A were in accordance with ANSI/ADAs requirements regarding solubility whilst iRoot SP, MTA Fillapex and Sealapex did not fulfil ANSI/ADAs protocols. High levels of Ca2+ ion release were observed in all materials except AH Plus. SEM/EDX analysis revealed that all samples had morphological changes in both outer and inner surfaces after the solubility test. High levels of calcium and carbon were also observed at the surface of all materials except AH Plus and MTA-A.
Resumo:
Introduction: The purpose of this study was to evaluate the biocompatibility of calcium aluminate cement (EndoBinder) in subcutaneous tissue of rats. Methods: Fifteen rats, weighing 300 g, were separated into 3 groups (n = 5) in accordance with the time of death (7, 21, 42 days). Two incisions were made in the dorsal subcutaneous tissue of each rat in which were implanted 2 polyethylene tubes filled with the test materials, Endo Binder (EB) and Grey MTA (GMTA). The external tube walls were considered the negative control group (CG). After 7, 21, and 42 days, animals were killed, obtaining 5 samples per group, at each time interval of analysis. Results: From the morphologic and morphometric analyses by using a score of (0-3) (50, 100, and 400x), results showed absence of inflammatory reaction (0) for EB after 42 days. However, for GMTA, a slight inflammatory reaction (1) was observed after 42 days, which means the persistence of a chronic inflammatory process. When compared with CG, tissue reaction ranging from discrete (1-7 days) to absent (0-42 days) was observed. Conclusions: EndoBinder presented satisfactory tissue reaction; it was biocompatible when tested in subcutaneous tissue of rats. (J Endod 2012;38:367-371)
Resumo:
The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC) was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO), determined by weight. Mineral trioxide aggregate (MTA) was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/ Tukey tests (p < 0.05). The cements in which bismuth oxide was added showed radiopacity corresponding to the ISO recommendations ( > 3 mm equivalent of Al). The MTA group was statistically similar to the CSC / 30% BO group (p > 0.05). In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC / 50% BO group (p < 0.05). The comparison between 24 hours and 7 days showed higher ΔE for the MTA group, with statistical differences for the CSC / 15% BO and CSC / 50% BO groups (p < 0.05). After 30 days, CSC showed statistically higher ΔE values than CSC / 30% BO and CSC / 50% BO (p < 0.05). In conclusion, the increase in radiopacity provided by bismuth oxide has no relation to the color alteration of calcium silicate-based cements.
Resumo:
Aim: To compare the clinical, radiographic and histological responses of the pulp to mineral trioxide aggregate (MTA), calcium hydroxide (CH) and Portland cement (PC) when used as a pulpotomy agent in human primary teeth. Study design: Forty-five mandibular primary molar teeth were randomly assigned to CH, MTA or PC groups and treated by pulpotomy technique. Methods: The teeth were treated by conventional pulpotomy technique, differing only in the capping material for each group. Clinical and radiographic evaluations were recorded at 6-, 12- and 24-month follow-up. Teeth in the regular exfoliation period were further processed for histologic analysis. Statistics: The teeth were treated by conventional pulpotomy technique, differing only in the capping material for each group. Clinical and radiographic evaluations were recorded at 6-, 12- and 24-month follow-up. Teeth in the regular exfoliation period were further processed for histologic analysis. Statistics: Clinically and radiographically, the MTA and PC groups showed 100 % success rates at 6, 12 and 24 months. In CH group, several teeth presented clinical and radiographic failures detected throughout the follow-up period, and internal resorption was a frequent radiographic finding. Histologic analysis revealed the presence of dentine-like mineralised material deposition obliterating the root canal in the PC and MTA groups. CH group presented, in most of the sections, necrotic areas in the root canals. Conclusions: MTA and PC may serve as effective materials for pulpotomies of primary teeth as compared to CH. Although our results are very encouraging, further studies and longer follow-up assessments are needed in order to determine the safe clinical indication of Portland cement.