986 resultados para microbial pest control
Resumo:
Introducción: En 2005 se consumían en España más de 100.000 toneladas/año de plaguicidas, en actividades tan diversas como la agricultura y la ganadería o el tratamiento de la madera y la gestión de plagas estructurales. A pesar de los demostrados efectos negativos de estas sustancias sobre la salud de las personas, existe muy poca información relativa a los niveles y la frecuencia de exposición de los trabajadores expuestos, así como de las ocupaciones más afectadas. Este trabajo tiene como objetivo recopilar la información disponible sobre exposición laboral a plaguicidas en España, en forma de una matriz empleo-exposición (MEE), un sistema de información que permite ordenar de forma sistemática la información más relevante sobre ocupaciones, agentes, prevalencia y nivel/intensidad de exposición en un determinado contexto (país, periodo, etc.).
Resumo:
In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 x 10(-8) M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens.
Resumo:
Certain fluorescent pseudomonads can protect plants from soil-borne pathogens, and it is important to understand how these biocontrol agents survive in soil. The persistence of the biocontrol strain Pseudomonas fluorescens CHA0-Rif under plough pan conditions was assessed in non-sterile soil microcosms by counting total cells (immunofluorescence microscopy), intact cells (BacLight membrane permeability test), viable cells (Kogure's substrate-responsiveness test) and culturable cells (colony counts on selective plates) of the inoculant. Viable but non-culturable cells of CHA0-Rif (106 cells g-1 soil) were found in flooded microcosms amended with fermentable organic matter, in which the soil redox potential was low (plough pan conditions), in agreement with previous observations of plough pan samples from a field inoculated with CHA0-Rif. However, viable but non-culturable cells were not found in unamended flooded, amended unflooded or unamended unflooded (i.e. control) microcosms, suggesting that such cells resulted from exposure of CHA0-Rif to a combination of low redox potential and oxygen limitation in soil. CHA0-Rif is strictly aerobic. Its anaerobic regulator ANR is activated by low oxygen concentrations and it controls production of the biocontrol metabolite hydrogen cyanide under microaerophilic conditions. Under plough pan conditions, an anr-deficient mutant of CHA0-Rif and its complemented derivative displayed the same persistence pattern as CHA0-Rif, indicating that anr was not implicated in the formation of viable but non-culturable cells of this strain at the plough pan.
Resumo:
In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to block their translation. RsmA-mediated repression is relieved at the end of exponential growth by two GacS/GacA-controlled regulatory RNAs RsmY and RsmZ, which bind and sequester the RsmA protein. A gene (rsmE) encoding a 64-amino-acid RsmA homolog was identified and characterized in strain CHA0. Overexpression of rsmE strongly reduced the expression of target genes (hcnA, for a hydrogen cyanide synthase subunit; aprA, for the main exoprotease; and phlA, for a component of 2,4-diacetylphloroglucinol biosynthesis). Single null mutations in either rsmA or rsmE resulted in a slight increase in the expression of hcnA, aprA, and phlA. By contrast, an rsmA rsmE double mutation led to strongly increased and advanced expression of these target genes and completely suppressed a gacS mutation. Both the RsmE and RsmA levels increased with increasing cell population densities in strain CHA0; however, the amount of RsmA showed less variability during growth. Expression of rsmE was controlled positively by GacA and negatively by RsmA and RsmE. Mobility shift assays demonstrated specific binding of RsmE to RsmY and RsmZ RNAs. The transcription and stability of both regulatory RNAs were strongly reduced in the rsmA rsmE double mutant. In conclusion, RsmA and RsmE together account for maximal repression in the GacS/GacA cascade of strain CHA0.
Resumo:
Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression.
Resumo:
In Pseudomonasfluorescens strain CHAO, the response regulator gene gacA controls expression of extracellular enzymes and antifungal secondary metabolites, which are important for this strain's biocontrol activity in the plant rhizosphere. Two Tn5 insertion mutants of strain CHA0 that had the same pleiotropic phenotype as gacA mutants were complemented by the gacS sensor kinase gene of P. syringae pv. syringae as well as that of P. fluorescens strain Pf-5, indicating that both transposon insertions had occurred in the gacS gene of strain CHA0. This conclusion was supported by Southern hybridisation using a gacS probe from strain Pf-5. Overexpression of the wild-type gacA gene partially compensated for the gacS mutation, however, the overexpressed gacA gene was not stably maintained, suggesting that this is deleterious to the bacterium. Strain CHA0 grown to stationary phase in nutrient-rich liquid media for several days accumulated spontaneous pleiotropic mutants to levels representing 1.25% of the population; all mutants lacked key antifungal metabolites and extracellular protease. Half of 44 spontaneous mutants tested were complemented by gacS, the other half were restored by gacA. Independent point and deletion mutations arose at different sites in the gacA gene. In competition experiments with mixtures of the wild type and a gacA mutant incubated in nutrient-rich broth, the mutant population temporarily increased as the wild type decreased. In conclusion, loss of gacA function can confer a selective advantage on strain CHA0 under laboratory conditions.
Resumo:
The rhizobacterium Pseudomonas fluorescens CHA0 promotes the growth of various crop plants and protects them against root diseases caused by pathogenic fungi. The main mechanism of disease suppression by this strain is the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). Direct plant growth promotion can be achieved through solubilization of inorganic phosphates by the production of organic acids, mainly gluconic acid, which is one of the principal acids produced by Pseudomonas spp. The aim of this study was to elucidate the role of gluconic acid production in CHA0. Therefore, mutants were created with deletions in the genes encoding glucose dehydrogenase (gcd) and gluconate dehydrogenase (gad), required for the conversion of glucose to gluconic acid and gluconic acid to 2-ketogluconate, respectively. These enzymes should be of predominant importance for rhizosphere-colonizing biocontrol bacteria, as major carbon sources provided by plant root exudates are made up of glucose. Our results show that the ability of strain CHA0 to acidify its environment and to solubilize mineral phosphate is strongly dependent on its ability to produce gluconic acid. Moreover, we provide evidence that the formation of gluconic acid by CHA0 completely inhibits the production of PLT and partially inhibits that of DAPG. In the Deltagcd mutant, which does not produce gluconic acid, the enhanced production of antifungal compounds was associated with improved biocontrol activity against take-all disease of wheat, caused by Gaeumannomyces graminis var. tritici. This study provides new evidence for a close association of gluconic acid metabolism with antifungal compound production and biocontrol activity in P. fluorescens CHA0.
Resumo:
The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative DeltaphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a DeltaphlA DeltaphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s(-1) and a Km of 140 microM at 30 degrees C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH.
Resumo:
The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere.
Resumo:
To evaluate the effect of soil management systems on population of white grubs, (Phyllophaga cuyabana Moser), and on its damage in soybean, experiments were set up under no-tillage and conventional tillage (one disk plow, and a leveling disk harrow) areas. Primary tillage equipment, used in other soil management systems, such as moldboard plow, disk plow, chisel plow and heavy duty disk harrow were also tested. Fluctuation of P. cuyabana population and the extent of its damage to soybean was similar under no-tillage and conventional tillage systems. Results comparing a range of primary tillage equipment showed that it affected soil insect populations differently, depending on the time during the season in which tillage was executed. Larval mortality could mostly be attributed to their exposure to adverse factors, soon after tillage, than to changes in soil conditions. Reduction of white grub population was more evident in plots managed by heavier equipment, such as the moldboard plow. Soil tillage could be one component within the soil pest management system in soybean, however, its use can not be generalized.
Resumo:
Many biotic and abiotic factors affect the persistence and activity of beneficial pseudomonads introduced into soil to suppress plant diseases. One such factor may be the presence of virulent bacteriophages that decimate the population of the introduced bacteria, thereby reducing their beneficial effect. We have isolated a lytic bacteriophage (phi)GP100) that specifically infects the biocontrol bacterium Pseudomonas fluorescens CHA0 and some closely related Pseudomonas strains. phiGP100 was found to be a double-stranded-DNA phage with an icosahedral head, a stubby tail, and a genome size of approximately 50 kb. Replication of phiGP100 was negatively affected at temperatures higher than 25 degrees C. phiGP100 had a negative impact on the population size and the biocontrol activity of P. fluorescens strain CHA0-Rif (a rifampicin-resistant variant of CHA0) in natural soil microcosms. In the presence of phiGP100, the population size of strain CHA0-Rif in soil and on cucumber roots was reduced more than 100-fold. As a consequence, the bacterium's capacity to protect cucumber against a root disease caused by the pathogenic oomycete Pythium ultimum was entirely abolished. In contrast, the phage affected neither root colonization and nor the disease suppressive effect of a phiDGP100-resistant variant of strain CHA0-Rif. To our knowledge, this study is the first to illustrate the potential of phages to impair biocontrol performance of beneficial bacteria released into the natural soil environment.
Resumo:
The objective of this research was to evaluate the effect of the insect resistant soybean genotype IAC 17 on reproductive characteristics of Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) females compared to the soybean insect susceptible genotype UFV 16. Treatments were: T1) females of P. nigrispinus fed on plants of the UFV 16 and Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) caterpillars reared on leaves of this variety; T2) females of P. nigrispinus fed on plants of the IAC 17 and A. gemmatalis caterpillars reared on leaves of this variety. Longevity of females, pre-oviposition, oviposition and pos-oviposition periods, number of eggs and egg masses/female, egg weight, interval between egg mass laying, number of eggs/egg mass, percentage of nymphs, number of nymphs/female and total number of prey killed/female of P. nigrispinus were evaluated. Most of the characteristics evaluated showed similar results between treatments, but the oviposition period was longer for females reared on the resistant genotype than on the susceptible one and the percentage of total females that laid eggs was lower on the IAC 17. Also, the resistant genotype caused higher mortality of P. nigrispinus females at the beginning of its adult stage and egg production by females of this predator was better spread along its adult stage with this resistant genotype. On the other hand, results suggest no effect of the resistant genotype on the offspring of this predator.
Resumo:
The objective of this research was to evaluate the parasitism behavior of Telenomus podisi Ashmead, Trissolcus basalis (Wollaston) e Trissolcus urichi Crawford (Hymenoptera: Scelionidae) on eggs of Nezara viridula L., Euschistus heros F., Piezodorus guildinii Westwood and Acrosternum aseadum Rolston (Heteroptera: Pentatomidae), in no choice and multiple choice experiments. For all parasitoid species, the results demonstrated the existence of a main host species that maximizes the reproductive success. The competitive interactions among the parasitoid species were investigated in experiments of sequential and simultaneous release of different combinations of parasitoid pairs on the hosts N. viridula, E. heros and A. aseadum. Exploitative competition was observed for egg batches at the genus level (Telenomus vs. Trissolcus) and interference competition at the species level (T. basalis vs. T. urichi). Trissolcus urichi was the most aggressive species, interfering with the parasitism of T. basalis. Generally, T. basalis showed an opportunistic behavior trying to parasitise eggs after T. urichi had abandoned the egg batch. The selection of parasitoid species for use in augmentative biological control programs should take into account the diversity of pentatomids present in soybean in addition to the interactions among the different species of parasitoids.
Resumo:
The objective of this study was to determine the effects of rainfall, temperature, sunlight and relative humidity, as well as predators and parasitoids, leaf chemical composition and levels of leaf nitrogen and potassium on the intensity of Scirtothrips manihoti (Thysanoptera: Thripidae) attack on cassava Manihot esculenta Crantz var. Cacau. The leaf compounds (E)-farnesene/trans-farnesol and D-friedoolean-14-en-3-one correlated significantly with the population of S. manihoti. Insect population decreased in the dry and cold season probably due to leaf senescence. Significative correlation was observed between Syrphidae with S. manihoti populations.
Resumo:
The objective of this study was to characterize the Peruvian isolate of Metarhizium anisopliae var. acridum, CG 863, obtained from the grasshopper Schistocerca interrita, a crop pest in Peru. The characterization was done by comparing this isolate with two other ones of M. anisopliae var. acridum, from Brazil and Australia, and with an isolate of M. anisopliae var. anisopliae. The three M. anisopliae var. acridum isolates had similar growth profiles in agar plates at 25°C and 37°C, and similar RAPD patterns according to the analysis of three primers. However, regarding these parameters and conidial size, these isolates were very distinct when compared to M. anisopliae var. anisopliae isolate. Bioassays indicated that the Peruvian isolate is as pathogenic as the Brazilian isolate against nymphs of Rhammatocerus schistocercoides.