986 resultados para microbial degradation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

g-butyrobetaine has long been known as the precursor of endogenous L-carnitine synthesis. In this issue, Koeth et al. (2014) demonstrate that it is also a major metabolite of L-carnitine degradation by gut bacteria that precedes the enteric production of trimethylamine and trimethylamine-N-oxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ecology of soils associated with dead mammals (i.e. cadavers) is poorly understood. Although temperature and soil type are well known to influence the decomposition of other organic resource patches, the effect of these variables on the degradation of cadavers in soil has received little experimental investigation. To address this, cadavers of juvenile rats (Rattus rattus) were buried in one of three contrasting soils (Sodosol, Rudosol, and Vertosol) from tropical savanna ecosystems in Queensland, Australia and incubated at 29 °C, 22 °C, or 15 °C in a laboratory setting. Cadavers and soils were destructively sampled at intervals of 7 days over an incubation period of 28 days. Measurements of decomposition included cadaver mass loss, carbon dioxide–carbon (CO2–C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, and soil pH, which were all significantly positively affected by cadaver burial. A temperature effect was observed where peaks or differences in decomposition that at occurred at higher temperature would occur at later sample periods at lower temperature. Soil type also had an important effect on some measured parameters. These findings have important implications for a largely unexplored area of soil ecology and nutrient cycling, which are significant for forensic science, cemetery planning and livestock carcass disposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A controlled laboratory experiment is described, in principle and practice, which can be used for the of determination the rate of tissue decomposition in soil. By way of example, an experiment was conducted to determine the effect of temperature (12°C, 22°C) on the aerobic decomposition of skeletal muscle tissue (Organic Texel × Suffolk lamb (Ovis aries)) in a sandy loam soil. Measurements of decomposition processes included muscle tissue mass loss, microbial CO2 respiration, and muscle tissue carbon (C) and nitrogen (N). Muscle tissue mass loss at 22°C always was greater than at 12°C (p < 0.001). Microbial respiration was greater in samples incubated at 22°C for the initial 21 days of burial (p < 0.01). All buried muscle tissue samples demonstrated changes in C and N content at the end of the experiment. A significant correlation (p < 0.001) was demonstrated between the loss of muscle tissue-derived C (C1) and microbially-respired C (Cm) demonstrating CO2 respiration may be used to predict mass loss and hence biodegradation. In this experiment Q10 (12°C - 22°C) = 2.0. This method is recommended as a useful tool in determining the effect of environmental variables on the rate of decomposition of various tissues and associated materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed at determining the influence of condensed tannins present in the Brazilian legume species Mimosa hostilis, Mimosa caesalpinifolia and Bauhinia cheilantha on ruminal degradability, microbial colonization and enzymatic activity. Polyethylene glycol (PEG) was used to reduce the astringency and concentration of soluble condensed tannins. Four ruminally-cannulated Saanen goats (60 +/- 8 kg BW) were fed, in two experimental periods, with a hay diet based on the studied legumes treated or non-treated with PEG. Voluntary intake, microbial colonization, DM, CP, NDF, and ruminal degradability of PEG treated and non-treated forage leaves, as well as pH, ammonia and 1,4 P-endoglucanase activity of the rumen content were evaluated. Astringency and soluble tannin concentration of the studied legumes were reduced by approximately 70% and 50%, respectively, with PEG treatment. Average DM intake was higher for the treated diet (16.76 g DM/kg BW/day against 13.06 g DM/kg BW/day). Percentile values for degradation parameters and for potential and effective degradabilities of DM, CP and NDF were also affected by the tannins, but at different intensities. Electron microscopic observations of ruminally-incubated legume leaves showed a more effective microbial colonization of PEG-treated leaves for all legume species. A decrease in pH and an increase in ammonia concentration and in endoglucanase activity in the ruminal content was also observed for PEG-treated diets at all sampling periods. Condensed tannins of the studied legume species have influenced the adhesion conditions, colonization and enzymatic activity of the microbial ecosystem, and consequently the ruminal degradation of the different dietary fractions. For this reason, the reduction in condensed tannin would be of great importance to improve the nutrition of ruminant feeding of these species. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pectinases are a big group of enzymes that break down pectic polysaccharides of plant tissues into simpler molecules like galacturonic acids. It has long been used to increase yields and clarity of fruit juices. Since pectic substances are a very complex macromolecule group, various pectinolytic enzymes are required to degrade it completely. These enzymes present differences in their cleavage mode and specificity being basically classified into two main groups that act on pectin smooth regions or on pectin hairy regions. Pectinases are one of the most widely distributed enzymes in bacteria, fungi and plants. This review describes the pectinolytic enzymes and their substrates, the microbial pectinase production and characterization, and the industrial application of these enzymes. © Pedrolli et al.; Licensee Bentham Open.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to use 15N to label microbial cells to allow development of equations for estimating the microbial contamination in ruminal in situ incubation residues of forage produced under tropical conditions. A total of 24 tropical forages were ruminal incubated in 3 steers at 3 separate times. To determine microbial contamination of the incubated residues, ruminal bacteria were labeled with 15N by continuous intraruminal infusion 60 h before the first incubation and continued until the last day of incubation. Ruminal digesta was collected for the isolation of bacteria before the first infusion of 15N on adaptation period and after the infusion of 15N on collection period. To determine the microbial contamination of CP fractions, restricted models were compared with the full model using the model identity test. A value of the corrected fraction A was estimated from the corresponding noncorrected fraction by this equation: Corrected A fraction (ACPC) = 1.99286 + 0.98256 × A fraction without correction (ACPWC). The corrected fraction B was estimated from the corresponding noncorrected fraction and from CP, NDF, neutral detergent insoluble protein (NDIP), and indigestible NDF (iNDF) using the equation corrected B fraction (BCPC) = -17.2181 - 0.0344 × fraction B without correction (BCPWC) + 0.65433 × CP + 1.03787 × NDF + 2.66010 × NDIP - 0.85979 × iNDF. The corrected degradation rate of B fraction (kd)was estimated using the equation corrected degradation rate of B fraction (kdCPC) = 0.04667 + 0.35139 × degradation rate of B fraction without correction (kdCPWC) + 0.0020 × CP - 0.00055839 × NDF - 0.00336 × NDIP + 0.00075089 × iNDF. This equation was obtained to estimate the contamination using CP of the feeds: %C = 79.21 × (1 - e-0.0555t) × e-0.0874CP. It was concluded that A and B fractions and kd of CP could be highly biased by microbial CP contamination, and therefore these corrected values could be obtained mathematically, replacing the use of microbial markers. The percentage of contamination and the corrected apparent degradability of CP could be obtained from values of CP and time of incubation for each feed, which could reduce cost and labor involved when using 15N. © 2013 American Society of Animal Science. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, an effective microbial consortium for the biodegradation of phenol was grown under different operational conditions, and the effects of phosphate concentration (1.4 g L-1, 2.8 g L-1, 4.2 g L-1), temperature (25 degrees C, 30 degrees C, 35 degrees C), agitation (150 rpm, 200 rpm, 250 rpm) and pH (6, 7, 8) on phenol degradation were investigated, whereupon an artificial neural network (ANN) model was developed in order to predict degradation. The learning, recall and generalization characteristics of neural networks were studied using data from the phenol degradation system. The efficiency of the model generated by the ANN was then tested and compared with the experimental results obtained. In both cases, the results corroborate the idea that aeration and temperature are crucial to increasing the efficiency of biodegradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (alpha-A RH D bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirao Experimental Station secondary forest (SF) and agriculture (AG)-, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (similar to 150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome.