981 resultados para microbial biomass C


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment samples collected during the expedition "Arctic Ocean '96" with the Swedish ice-breaker ODEN were investigated to estimate for the first time heterotrophic activity and total microbial biomass (size range from bacteria to small metazoans) from the perennially ice-covered central Arctic Ocean. Benthic activities and biomass were evaluated analysing a series of biogenic sediment compounds (i.e. bacterial exoenzymes, total adenylates, DNA, phospholipids, particulate proteins). In contrast to the very time-consuming sorting, enumeration and weight determination, analyses of biochemical sediment parameters may represent a useful method for obtaining rapid information on the ecological situation in a given benthic system. Bacterial cell numbers and biomass were estimated for comparison with biochemically determined biomass data, to evaluate the contribution of the bacterial biomass to the total microbial biomass. It appeared that bacterial biomass made up only 8-31% (average of all stations = 20%) of the total microbial biomass, suggesting a large fraction of other small infaunal organisms within the sediment samples (most probably fungi, yeasts, protozoans such as flagellates, ciliates or amoebae, as well as a fraction of small metazoans). Activity and biomass values determined within this study were generally extremely low, and often even slightly lower than those given for other deep oceanic regions, thus characterizing the seafloor of the central Arctic Ocean as a "benthic desert". Nevertheless, some clear trends in the data could be found, e.g. generally sharply decreasing values within the sediment column, a vague tendency for declining values with increasing water depth of sampling stations, and also differences between various Arctic deep-sea regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory methods to estimate the amount of C in the soil microbial biomass and the relative contributions of prokaryotes and eukaryotes in the biomass were used to evaluate the influence of pesticides on the soil microflora. Experiments were conducted with 5 and 50 micrograms per gram of three fungicides, captan, thiram and verdesan. At 5 micrograms per gram they caused significant decreases (40%) in the biomass; the organomercury fungicide verdesan also caused a shift from fungal to bacterial dominance. Within 8 days, biomass in captan- and thiram-amended soils had recovered to that of controls. Although the fungal to bacterial balance was restored in verdesan-amended soils, biomass recovery was not complete. At 50 micrograms per gram the fungicides caused long-term decreases in the biomass and altered the relative proportions of the bacterial and fungal populations. Verdesan had the greatest effect on soil microbial biomass and competition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four pedons on each of four drift sheets in the Lake Wellman area of the Darwin Mountains were sampled for chemical and microbial analyses. The four drifts, Hatherton, Britannia, Danum, and Isca, ranged from early Holocene (10 ka) to mid-Quaternary (c. 900 ka). The soil properties of weathering stage, salt stage, and depths of staining, visible salts, ghosts, and coherence increase with drift age. The landforms contain primarily high-centred polygons with windblown snow in the troughs. The soils are dominantly complexes of Typic Haplorthels and Typic Haploturbels. The soils were dry and alkaline with low levels of organic carbon, nitrogen and phosphorus. Electrical conductivity was high accompanied by high levels of water soluble anions and cations (especially calcium and sulphate in older soils). Soil microbial biomass, measured as phospholipid fatty acids, and numbers of culturable heterotrophic microbes, were low, with highest levels detected in less developed soils from the Hatherton drift. The microbial community structure of the Hatherton soil also differed from that of the Britannia, Danum and Isca soils. Ordination revealed the soil microbial community structure was influenced by soil development and organic carbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Afforestation of agricultural land is increasing, partly because it is an important biological method for reducing the concentration of atmospheric CO2 and potentially mitigating climate change. Rainfall patterns are changing and prolonged dry periods are predicted for many regions of the world, including southern Australia. To accurately predict land-use change potential for mitigating climate change, we need to have a better understanding of how changes in land-use (i.e. afforestation of pastures) may change the soils response to prolonged dry periods. We present results of an incubation study characterising C and N dynamics and the microbial community composition in soil collected from two tree plantings and their adjacent pastures under a baseline and reduced frequency. While the concentration of soil C was similar in pasture and tree planting soils, heterotrophic respiration was significantly lower in soil from pastures than tree plantings. Although there was little difference in the composition of the soil microbial community among any of the soils or treatments, differences in N cycling could indicate a difference in microbial activity, which may explain the differences in heterotrophic respiration between pastures and tree plantings. Soils from pastures and tree plantings responded similarly to a reduction in wetting frequency, with a decrease in microbial biomass (measured as total PLFA), and a similar reduction in heterotrophic respiration from the soil. This suggests that the responses to changes in future wetting cycles may be less dependent on land-use type than expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reforestation of pastures in riparian zones has the potential to decrease nutrient runoff into waterways, provide both terrestrial and aquatic habitat, and help mitigate climate change by sequestering carbon (C). Soil microbes can play an important role in the soil C cycle, but are rarely investigated in studies on C sequestration. We surveyed a chronosequence (0-23years) of mixed-species plantings in riparian zones to investigate belowground (chemical and biological) responses to reforestation. For each planting, an adjacent pasture was surveyed to account for differences in soil type and land-use history among plantings. Two remnant woodlands were included in the survey as indicators of future potential of plantings. Both remnant woodlands had significantly higher soil organic C (SOC) content compared with their adjacent pastures. However, there was no clear trend in SOC content among plantings with time since reforestation. The substantial variability in SOC sequestration among plantings was possibly driven by differences in soil moisture among plantings and the inherent variability of SOC content among reference pastures adjacent to plantings. Soil microbial phospholipid fatty acids (PLFA, an indicator of microbial biomass) and activities of decomposition enzymes (β-glucosidase and polyphenol oxidase) did not show a clear trend with increasing planting age. Despite this, there were positive correlations between total SOC concentration and microbial indicators (total PLFA, fungal PLFA, bacterial PLFA and activities of decomposition enzymes) across all sites. The soil microbial community compositions (explored using PLFA markers) of older plantings were similar to those of remnant woodlands. There was a positive correlation between the soil carbon:nitrogen (C:N) and fungal:bacterial (F:B) ratios. These data indicate that in order to maximise SOC sequestration, we need to take into account not only C inputs, but the microbial processes that regulate SOC cycling as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reforestation of agricultural lands has the potential to sequester C, while providing other environmental benefits. It is well established that reforestation can have a profound impact on soil physicochemical properties but the associated changes to soil microbial communities are poorly understood. Therefore, the objective of this study was to quantify changes in soil physicochemical properties and microbial communities in soils collected from reforested pastures and compare then to remnant vegetation and un-reforested pastures. To address this aim, we collected soil from two locations (pasture and its adjacent reforested zone, or pasture and its adjacent remnant vegetation) on each of ten separate farms that covered the range of planting ages (0-30 years and remnant vegetation) in a temperate region of southeastern Australia. Soils were analysed for a range of physicochemical properties (including C and nutrients), and microbial biomass and community composition (PLFA profiles). Soil C:N ratios increased with age of tree planting, and soil C concentration was highest in the remnant woodlands. Reforestation had no clear impact on soil microbial biomass or fungal:bacterial ratios (based on PLFA's). Reforestation was associated with significant changes in the molecular composition of the soil microbial community at many farms but similar changes were found within a pasture. These results indicate that reforestation of pastures can result in changes in soil properties within a few decades, but that soil microbial community composition can vary as much spatially within pastures as it does after reforestation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microorganisms play key roles in biogeochemical cycling by facilitating the release of nutrients from organic compounds. In doing so, microbial communities use different organic substrates that yield different amounts of energy for maintenance and growth of the community. Carbon utilization efficiency (CUE) is a measure of the efficiency with which substrate carbon is metabolized versus mineralized by the microbial biomass. In the face of global change, we wanted to know how temperature affected the efficiency by which the soil microbial community utilized an added labile substrate, and to determine the effect of labile soil carbon depletion (through increasing duration of incubation) on the community's ability to respond to an added substrate. Cellobiose was added to soil samples as a model compound at several times over the course of a long-term incubation experiment to measure the amount of carbon assimilated or lost as CO2 respiration. Results indicated that in all cases, the time required for the microbial community to take up the added substrate increased as incubation time prior to substrate addition increased. However, the CUE was not affected by incubation time. Increased temperature generally decreased CUE, thus the microbial community was more efficient at 15 degrees C than at 25 degrees C. These results indicate that at warmer temperatures microbial communities may release more CO2 per unit of assimilated carbon. Current climate-carbon models have a fixed CUE to predict how much CO2 will be released as soil organic matter is decomposed. Based on our findings, this assumption may be incorrect due to variation of CUE with changing temperature. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of acid rock drainage (ARD) and eutrophication on microbial communities in stream sediments above and below an abandoned mine site in the Adelaide Hills, South Australia, was quantified by PLFA analysis. Multivariate analysis of water quality parameters, including anions, soluble heavy metals, pH, and conductivity, as well as total extractable metal concentrations in sediments, produced clustering of sample sites into three distinct groups. These groups corresponded with levels of nutrient enrichment and/or concentration of pollutants associated with ARD. Total PLFA concentration, which is indicative of microbial biomass, was reduced by >70% at sites along the stream between the mine site and as far as 18 km downstream. Further downstream, however, recovery of the microbial abundance was apparent, possibly reflecting dilution effect by downstream tributaries. Total PLFA was >40% higher at, and immediately below, the mine site (0-0.1 km), compared with sites further downstream (2.5-18 km), even after accounting for differences in specific surface area of different sediment samples. The increased microbial population in the proximity of the mine source may be associated with the presence of a thriving iron-oxidizing bacteria community as a consequence of optimal conditions for these organisms while the lower microbial population further downstream corresponded with greater sediments' metal concentrations. PCA of relative abundance revealed a number of PLFAs which were most influential in discriminating between ARD-polluted sites and the rest of the sites. These PLFA included the hydroxy fatty acids: 2OH12:0, 3OH12:0, 2OH16:0; the fungal marker: 18:2ω6; the sulfate-reducing bacteria marker 10Me16:1ω7; and the saturated fatty acids 12:0, 16:0, 18:0. Partial constrained ordination revealed that the environmental parameters with the greatest bearing on the PLFA profiles included pH, soluble aluminum, total extractable iron, and zinc. The study demonstrated the successful application of PLFA analysis to rapidly assess the toxicity of ARD-affected waters and sediments and to differentiate this response from the effects of other pollutants, such as increased nutrients and salinity.